TR 22 Resume

Introduction

Nous utilisons le registre de transparence de l’Union Européenne pour observer les caractéristiques des groupes d’intérêts qui interviennent auprès de la Commissions Européennes, et en particulier pour observer les différences entre les groupes qui sont dans des groupes d’intérêts et ceux qui ne le sont pas.

Data

Commençons tout d’abord par détailler les données :

  • Nous nous appuyons sur les données publiées par l’Union Européenne à cette adresse : https://data.europa.eu/data/datasets/transparency-register?locale=en

  • On choisit de travailler sur les données de janvier 2022, car le format des données change à partir de ce point, et que certaines informations sont (encore) moins bien remplies, en particulier ce qui concerne les budgets, qui sont renseignés à la fois comme des chiffre bruts et à la fois commet des intervalles dans la même colonne et sont donc difficilement exploitables à partir de juin 2022.

  • On utilise aussi en parallèle les données nettoyées par LobbyFacts, qui permet de nettoyer des informations sur le nombre de temps pleins et sur les budgets : https://www.lobbyfacts.eu/


Attachement du package : 'dplyr'
Les objets suivants sont masqués depuis 'package:stats':

    filter, lag
Les objets suivants sont masqués depuis 'package:base':

    intersect, setdiff, setequal, union

On créé une variable score basée sur le dernier quantile des variables quantitatives, et la présence de la modalité pour les variables dichtomiques :

  • Nombre d’ETP

  • Nombre de personne accrédité au PE

  • Nombre de RDV avec la CE

  • Nombre d’OPC

  • Nombre de ROADMAPS

  • Bureau à Bruxelles

  • A eu une bourse de l’UE

Tableau Récapitulatif des principales variables

Ressources par catégorie
En 2022 - Pourcentage ligne
Characteristic Academic institutions
N = 3651
Associations and networks of public authorities
N = 91
Companies & groups
N = 2,9071
Entities, offices or networks established by third countries
N = 11
Law firms
N = 941
Non-governmental organisations, platforms and networks and similar
N = 3,5271
Organisations representing churches and religious communities
N = 551
Other organisations
N = 3291
Other organisations, public or mixed entities
N = 141
Other public or mixed entities, created by law whose purpose is to act in the public interest
N = 2761
Other sub-national public authorities
N = 911
Professional consultancies
N = 5801
Regional structures
N = 1101
Self-employed individuals
N = 2291
Think tanks and research institutions
N = 6011
Trade and business associations
N = 2,7141
Trade unions and professional associations
N = 9901
Transnational associations and networks of public regional or other subnational authorities
N = 731
Overall
N = 12,9651
Number.of.persons.involved: 3.0 (1.0, 6.0) - max = 65.0) 4.0 (2.0, 7.0) - max = 16.0) 2.0 (1.0, 4.0) - max = 72.0) 4.0 (4.0, 4.0) - max = 4.0) 2.0 (1.0, 4.0) - max = 26.0) 2.0 (1.0, 5.0) - max = 80.0) 3.0 (1.0, 4.0) - max = 21.0) 2.0 (1.0, 3.0) - max = 36.0) 2.5 (1.0, 12.0) - max = 46.0) 3.0 (1.0, 5.0) - max = 54.0) 3.0 (1.0, 6.0) - max = 32.0) 2.0 (1.0, 5.0) - max = 58.0) 3.0 (2.0, 6.0) - max = 26.0) 1.0 (1.0, 1.0) - max = 11.0) 3.0 (2.0, 7.0) - max = 51.0) 2.0 (1.0, 4.0) - max = 115.0) 2.0 (1.0, 4.0) - max = 28.0) 4.0 (1.0, 7.0) - max = 38.0) 2.0 (1.0, 4.0) - max = 115.0)
Members.FTE 1.00 (0.50, 2.50) - max = 46.00) 2.00 (1.00, 7.00) - max = 15.00) 0.75 (0.25, 1.75) - max = 54.50) 4.00 (4.00, 4.00) - max = 4.00) 1.00 (0.50, 2.00) - max = 13.00) 1.00 (0.50, 2.50) - max = 43.00) 1.00 (0.75, 2.50) - max = 16.00) 0.75 (0.25, 1.75) - max = 32.00) 1.50 (0.25, 6.00) - max = 23.00) 1.00 (0.50, 2.50) - max = 39.00) 1.50 (0.50, 5.00) - max = 19.00) 1.00 (0.50, 3.00) - max = 48.50) 2.00 (0.75, 3.50) - max = 21.50) 0.75 (0.25, 1.00) - max = 6.00) 1.50 (0.50, 4.00) - max = 37.00) 1.00 (0.50, 2.00) - max = 41.75) 0.75 (0.25, 1.75) - max = 23.25) 2.00 (0.75, 4.00) - max = 38.00) 1.00 (0.50, 2.00) - max = 54.50)
Number.of.EP.accredited.persons 1.00 (1.00, 1.00) - max = 2.00) NA (NA, NA) - max = NA) 2.00 (1.00, 4.00) - max = 11.00) NA (NA, NA) - max = NA) 3.00 (1.00, 5.00) - max = 6.00) 1.00 (1.00, 2.00) - max = 9.00) 1.00 (1.00, 3.00) - max = 8.00) 2.00 (1.00, 3.00) - max = 12.00) 8.00 (8.00, 8.00) - max = 8.00) 1.00 (1.00, 1.50) - max = 2.00) 1.00 (1.00, 1.00) - max = 1.00) 3.00 (1.00, 5.00) - max = 23.00) 1.00 (1.00, 1.00) - max = 1.00) 1.00 (1.00, 1.00) - max = 1.00) 1.50 (1.00, 2.00) - max = 5.00) 2.00 (1.00, 4.00) - max = 20.00) 2.00 (1.00, 3.00) - max = 13.00) 2.00 (2.00, 2.00) - max = 2.00) 2.00 (1.00, 4.00) - max = 23.00)
    Unknown 359 9 2,748 1 87 3,422 47 316 13 268 89 514 109 212 583 2,541 958 72 12,348
Bruxel


















    0 321 (3.3%) 8 (<0.1%) 2,414 (25%) 0 (0%) 47 (0.5%) 2,647 (28%) 22 (0.2%) 241 (2.5%) 14 (0.1%) 223 (2.3%) 56 (0.6%) 342 (3.6%) 63 (0.7%) 176 (1.8%) 465 (4.8%) 1,757 (18%) 746 (7.8%) 49 (0.5%) 9,591 (100%)
    1 44 (1.3%) 1 (<0.1%) 493 (15%) 1 (<0.1%) 47 (1.4%) 880 (26%) 33 (1.0%) 88 (2.6%) 0 (0%) 53 (1.6%) 35 (1.0%) 238 (7.1%) 47 (1.4%) 53 (1.6%) 136 (4.0%) 957 (28%) 244 (7.2%) 24 (0.7%) 3,374 (100%)
In_intergroup


















    0 315 (2.9%) 9 (<0.1%) 2,436 (23%) 1 (<0.1%) 90 (0.8%) 2,758 (26%) 30 (0.3%) 286 (2.7%) 14 (0.1%) 236 (2.2%) 75 (0.7%) 501 (4.7%) 90 (0.8%) 178 (1.7%) 510 (4.8%) 2,283 (21%) 827 (7.7%) 55 (0.5%) 10,694 (100%)
    1 50 (2.2%) 0 (0%) 471 (21%) 0 (0%) 4 (0.2%) 769 (34%) 25 (1.1%) 43 (1.9%) 0 (0%) 40 (1.8%) 16 (0.7%) 79 (3.5%) 20 (0.9%) 51 (2.2%) 91 (4.0%) 431 (19%) 163 (7.2%) 18 (0.8%) 2,271 (100%)
Has_EP_access


















    0 359 (2.9%) 9 (<0.1%) 2,748 (22%) 1 (<0.1%) 87 (0.7%) 3,422 (28%) 47 (0.4%) 316 (2.6%) 13 (0.1%) 268 (2.2%) 89 (0.7%) 514 (4.2%) 109 (0.9%) 212 (1.7%) 583 (4.7%) 2,541 (21%) 958 (7.8%) 72 (0.6%) 12,348 (100%)
    1 6 (1.0%) 0 (0%) 159 (26%) 0 (0%) 7 (1.1%) 105 (17%) 8 (1.3%) 13 (2.1%) 1 (0.2%) 8 (1.3%) 2 (0.3%) 66 (11%) 1 (0.2%) 17 (2.8%) 18 (2.9%) 173 (28%) 32 (5.2%) 1 (0.2%) 617 (100%)
Has_EU_grant


















    0 116 (1.1%) 9 (<0.1%) 2,392 (23%) 1 (<0.1%) 91 (0.9%) 2,503 (24%) 51 (0.5%) 275 (2.7%) 14 (0.1%) 172 (1.7%) 54 (0.5%) 536 (5.2%) 77 (0.8%) 223 (2.2%) 360 (3.5%) 2,455 (24%) 897 (8.7%) 36 (0.4%) 10,262 (100%)
    1 249 (9.2%) 0 (0%) 515 (19%) 0 (0%) 3 (0.1%) 1,024 (38%) 4 (0.1%) 54 (2.0%) 0 (0%) 104 (3.8%) 37 (1.4%) 44 (1.6%) 33 (1.2%) 6 (0.2%) 241 (8.9%) 259 (9.6%) 93 (3.4%) 37 (1.4%) 2,703 (100%)
In_Expert_groups


















    0 299 (2.8%) 8 (<0.1%) 2,497 (23%) 1 (<0.1%) 86 (0.8%) 2,933 (27%) 54 (0.5%) 284 (2.6%) 12 (0.1%) 233 (2.2%) 85 (0.8%) 550 (5.1%) 99 (0.9%) 222 (2.1%) 506 (4.7%) 2,036 (19%) 807 (7.5%) 56 (0.5%) 10,768 (100%)
    1 66 (3.0%) 1 (<0.1%) 410 (19%) 0 (0%) 8 (0.4%) 594 (27%) 1 (<0.1%) 45 (2.0%) 2 (<0.1%) 43 (2.0%) 6 (0.3%) 30 (1.4%) 11 (0.5%) 7 (0.3%) 95 (4.3%) 678 (31%) 183 (8.3%) 17 (0.8%) 2,197 (100%)
Nb_Expert_groups 1 (1, 1) - max = 3) 1 (1, 1) - max = 1) 1 (1, 1) - max = 7) NA (NA, NA) - max = NA) 1 (1, 2) - max = 2) 1 (1, 2) - max = 38) 1 (1, 1) - max = 1) 1 (1, 2) - max = 27) 1 (1, 1) - max = 1) 1 (1, 1) - max = 5) 1 (1, 1) - max = 5) 1 (1, 1) - max = 1) 1 (1, 3) - max = 4) 1 (1, 1) - max = 1) 1 (1, 1) - max = 8) 1 (1, 3) - max = 46) 2 (1, 3) - max = 25) 2 (1, 3) - max = 4) 1 (1, 2) - max = 46)
    Unknown 299 8 2,497 1 86 2,933 54 284 12 233 85 550 99 222 506 2,036 807 56 10,768
1 Median (Q1, Q3) - max = 100% Centile) ; n (%)

I. Description des organisations

Type d'organisation
Dans le registre de transparence de 2022
Characteristic N = 12,9651
Subsection
    Academic institutions 365 (2.8%)
    Associations and networks of public authorities 9 (<0.1%)
    Companies & groups 2,907 (22%)
    Entities, offices or networks established by third countries 1 (<0.1%)
    Law firms 94 (0.7%)
    Non-governmental organisations, platforms and networks and similar 3,527 (27%)
    Organisations representing churches and religious communities 55 (0.4%)
    Other organisations 329 (2.5%)
    Other organisations, public or mixed entities 14 (0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 276 (2.1%)
    Other sub-national public authorities 91 (0.7%)
    Professional consultancies 580 (4.5%)
    Regional structures 110 (0.8%)
    Self-employed individuals 229 (1.8%)
    Think tanks and research institutions 601 (4.6%)
    Trade and business associations 2,714 (21%)
    Trade unions and professional associations 990 (7.6%)
    Transnational associations and networks of public regional or other subnational authorities 73 (0.6%)
1 n (%)

ETP

Warning: Removed 12 rows containing non-finite outside the scale range
(`stat_bin()`).

   0%   10%   20%   30%   40%   50%   60%   70%   80%   90%  100% 
 0.00  0.25  0.25  0.50  0.75  1.00  1.25  1.75  2.50  4.50 54.50 

ETP en fonction des groupes d’expert

Le chargement a nécessité le package : grid
   (0,1]    (1,2]    (2,5]   (5,10] (10,100]     NA's 
    7481     2302     2110      707      353       12 
Characteristic 0
N = 10,7681
1
N = 2,1971
FTE_RECO

    (0,1] 6,543 (61%) 938 (43%)
    (1,2] 1,856 (17%) 446 (20%)
    (2,5] 1,594 (15%) 516 (24%)
    (5,10] 519 (4.8%) 188 (8.6%)
    (10,100] 247 (2.3%) 106 (4.8%)
    Unknown 9 3
1 n (%)
[1] 6.245775e-61

Bruxelles

Characteristic N = 12,9651
Bruxel
    0 9,591 (74%)
    1 3,374 (26%)
1 n (%)

Bruxelles en fonction des groupes d’experts

Characteristic 0
N = 10,7681
1
N = 2,1971
Bruxel

    0 8,355 (78%) 1,236 (56%)
    1 2,413 (22%) 961 (44%)
1 n (%)

[1] 1.452468e-95
                         TR22Full$Bruxel
TR22Full$In_Expert_groups         0         1
                        0  20.76852 -20.76852
                        1 -20.76852  20.76852
                  OR  2.5 % 97.5 %         p    
Fisher's test 2.6921 2.4430 2.9655 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

L’Odds ratio nous permet de lire que si on ne s’intéresse qu’à la participation à des groupes d’expert et à la présence de bureau à Bruxelles, on a 3,5 plus de chance de participer à un GE si l’on est à Bruxelles.

Resized limits to included dashed line in forest panel
`height` was translated to `width`.

Budget

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
      0    9999   37500  159882  150000 9875000       6 
     0%     30%     40%     50%     60%     70%     80%     90%    100% 
      0    9999   17500   37500   75000  150000  150000  450000 9875000 

Budgets en fonction des groupes d’experts

Warning: Removed 6 rows containing non-finite outside the scale range
(`stat_boxplot()`).

$`0`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
      0    9999   37500  134567  150000 7125000       4 

$`1`
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
      0   17500   75000  284022  350000 9875000       2 

    Welch Two Sample t-test

data:  Lobbying.cost by In_Expert_groups
t = -11.169, df = 2456.9, p-value < 2.2e-16
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
 -175694.7 -123213.7
sample estimates:
mean in group 0 mean in group 1 
       134567.3        284021.5 
Name Lobbying.cost
European Centre for Development Policy Management (ECDPM) 7125000
FTI Consulting Belgium 6875000
Fleishman-Hillard 6875000
Interel European Affairs 6625000
Burson Cohn & Wolfe Sprl (BCW) 6375000
Sieć Badawcza Łukasiewicz - Instytut Logistyki i Magazynowania (Ł-ILiM) 6125000
Google 5875000
Microsoft Corporation 5375000
Bruegel 5125000
Association for Financial Markets in Europe (AFME) 5125000
Kreab 4875000
Bayer AG 4375000
EUTOP Europe GmbH (EUTOP) 4125000
Friends of Europe (FoE) 3875000
Trinomics B.V. 3875000
BP p.l.c. (bp) 3625000
Brunswick Group LLP 3625000
Apple Inc. 3625000
IBON International Foundation, Inc. 3625000
Malta Communications Authority (MCA) 3375000
Stichting Dutch Green Building Council 3375000
Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata G. Bacci (CIBM) 3375000
FIPRA International SRL (FIPRA) 3125000
Teneo Brussels 3125000
SESAR Deployment Alliance (SDA) 3125000
The Brookings Institution 2625000
European Policy Centre (EPC) 2625000
Malaysian Employers Federation (MEF) 2375000
Weber Shandwick 2375000
Novartis International AG 2375000
International Swaps and Derivatives Association (ISDA) 2375000
Acumen Public Affairs 2375000
Centro Tecnológico del Mar - Fundación CETMAR (CETMAR) 2375000
Grayling 2375000
EUREKA Association AISBL (EUREKA) 2125000
Rud Pedersen Public Affairs Brussels (Rud Pedersen PA) 2125000
GUBERNA (GUBERNA) 2125000
Equinor ASA (EQNR) 2125000
ELECTRICITE DE FRANCE (EDF) 2125000
ENGIE (ENGIE) 2125000
TotalEnergies SE 2125000
British American Tobacco (BAT) 2125000
Finance Denmark (FIDA) 1875000
The Applied Research Institute - Jerusalem (ARIJ) 1875000
Deutsche Bank AG (DB) 1875000
ZN 1875000
logos public affairs (logos) 1875000
Vodafone Belgium SA (VBSA) 1875000
City of London Corporation (CoLC) 1875000
Associazione Bancaria Italiana (ABI) 1875000
Scotland Europa 1875000
Klaipėdos turizmo mokykla (KTM) 1875000
Johnson & Johnson (J&J) 1625000
Chevron Belgium BV (Chevron) 1625000
Finsbury Glover Hering Europe GmbH (FGH) 1625000
Organización Mundial de Ciudades y Gobiernos Locales Unidos - United Cities and Local Governments (UCLG) 1625000
South Denmark European office (SDEO) 1625000
FUNDACION CLUSTER AUTOMOCIÓN DE GALICIA CEAGA (CEAGA) 1625000
Incisive Health 1625000
PESQUERIAS ISLA MAYOR SL (PIMSA) 1625000
European Mortgage Federation - European Covered Bond Council (EMF-ECBC) 1625000
Syngenta Crop Protection AG 1625000
Rupprecht Consult - Forschung & Beratung GmbH (Rupprecht) 1625000
German Development Institute / Deutsches Institut für Entwicklungspolitik (DIE) (DIE) 1625000
Landmark Public Policy Advisers Europe Ltd (Landmark) 1625000
Hanover Communications International 1625000
Kon. BLN-Schuttevaer (BLN) 1625000
Centre for European Reform (CER) 1625000
Bundesverband der Deutschen Volksbanken und Raiffeisenbanken (BVR) 1625000
Pen & Tec Consulting SLU (Pen & Tec Consulting) 1625000
Inserm Transfert (IT) 1375000
King Baudouin Foundation (KBF) 1375000
Hume Brophy (HB) 1375000
Związek Gmin i Powiatów Subregionu Centralnego Województwa Śląskiego (ZGiPSCWSL) 1375000
Eni S.p.A. 1375000
Porter Novelli NV 1375000
General Electric Company (GE) 1375000
Pfizer Inc. (PFE) 1375000
Cisco Systems Inc. (Cisco) 1375000
Managed Funds Association (MFA) 1375000
Bank of America Corporation 1375000
Plastic Soup Foundation 1375000
The Investment Association (IA) 1375000
PahlConsulting, Lda (PAHL) 1375000
F. Hoffmann-La Roche Ltd (Roche) 1375000
NOVE (NOVE) 1375000
Transparency International (TI) 1375000
Asociación Empresarial de Investigación Centro Tecnológico del Mármol, Piedra y Materiales (CTM) 1375000
Political Intelligence (PI) 1375000
Barclays PLC 1375000
HSBC Holdings PLC (HSBC) 1375000
Stiftung Ordnungspolitik - Centrum für Europäische Politik (CEP) 1375000
UBS Group AG (UBS) 1125000
Energiasalv Pakri OÜ (Energiasalv) 1125000
The Pew Charitable Trusts (Pew) 1125000
British Council (BC) 1125000
NATIXIS 1125000
Observatoire social européen, asbl (OSE) 1125000
Suomen Ylioppilaskuntien Liitto SYL ry (SYL) 1125000
AtlasInvest Holding 1125000
Greater Copenhagen EU Office (GCPHEU) 1125000
Danish Foundation for Entrepreneurship (FFE) 1125000
European Health Forum Gastein (EHFG) 1125000
University College London (UCL) 1125000
Finnish Energy - Energiateollisuus ry (ET) 1125000
INOVYN ChlorVinyls 1125000
Wemos Foundation (Wemos) 1125000
kENUP Foundation (kENUP) 1125000
Covington & Burling LLP (Covington) 1125000
Dipartimento di Epidemiologia (DEASL) 1125000
Institut für Weltwirtschaft (Ifw) 1125000
Association of British Insurers (ABI) 1125000
Buurtsuper.be, de UNIZO organisatie van zelfstandige supermarkten 1125000
Shungham Information (FiscalNote Europe) 1125000
Agrární komora České republiky (AK ČR) 1125000
Caritas Europa (Caritas Europa) 1125000
Association of European Border Regions (AEBR-AGEG-ARFE) 1125000
GlaxoSmithKline (GSK) 1125000
DIRECCIÓN DE ENERGÍA (COMISIÓN NACIONAL DE LOS MERCADOS Y LA COMPETENCIA) (CNMC) 1125000
AT&T, Inc. (AT&T) 1125000
Avisa Partners 1125000
The Coca-Cola Company (Coca-Cola (NYSE: KO)) 1125000
Invest Europe (Invest Europe) 1125000
Associazione Intermediari Mercati Finanziari - ASSOSIM (Assosim) 1125000
PROVACUNO 1125000
Hill & Knowlton International Belgium (H+K) 1125000
Elettra - Sincrotrone Trieste S.C.p.A. (Elettra) 1125000
Credit Suisse Group AG (CSAG) 1125000
Association Française des Entreprises Privées / French Association of Large Companies (AFEP) 1125000
Samsung Electronics Europe 1125000
The Chemours Company (Chemours) 1125000
Stichting De Noordzee (SDN) 1125000
OrangeGas (OG) 1125000
EVONIK INDUSTRIES AG 1125000
Cooperatie Kottervisserij Nederland (VisNed) (VisNed) 1125000
Foie gras du Sud-Ouest (Palso) 1125000
Buildings Performance Institute Europe, BPIE ASBL (BPIE) 1125000
IFPI Representing recording industry worldwide (I.F.P.I.) 1125000
SAP 1125000
Instinctif Partners 1125000
Organisation de Producteurs "FROM Nord" (FROM Nord) 1125000
Svensk Försäkring 1125000
Dods Group PLC 1125000
Federazione tra le associazioni confederate del comparto energia (ConfindustriaEnergia) 1125000
Dompé farmaceutici spa 1125000
FERROVIAL CONSTRUCCION S.A. (FERROVIAL) 1125000
G Plus Ltd (t/a Portland) (Portland) 1125000
TS Corporation Srl (TSCorp) 1125000
The Lisbon Council for Economic Competitiveness and Social Renewal asbl (The Lisbon Council) 1125000
Liberty Global BV (Liberty Global) 1125000
Deutsche Telekom (DT) 1125000
Belgian Feed Association (BFA) 1125000
Third Generation Environmentalism Ltd (E3G) 1125000
Federbeton 1125000
European Association for Quality Assurance in Higher Education (ENQA) 1125000
Takeda Pharmaceuticals International GmbH (TPI Zurich) 1125000
Modint, Dutch Trade Association for Fashion, Textiles and Carpets (Modint) 1125000
Institut de Recherche pour le Développement (IRD) 1125000
Stichting Solidaridad Nederland (Solidaridad) 1125000
ENERGA-OPERATOR SA (EOP) 1125000
TYVAK INTERNATIONAL SRL (TYVAK INTERNATIONAL) 1125000
LVMH Publica (LVMH Publica) 1125000
Council of European Energy Regulators (CEER) 1125000
Jesuit Refugee Service - Europe (JRS-E) 1125000
Stichting The Ocean Cleanup (The Ocean Cleanup) 1125000
Stichting Car Claim (SCC) 1125000
Universidade do Porto (U.Porto) 1125000
KfW Bankengruppe (KfW) 1125000
Confédération générale des Scop (CG Scop) 1125000
fit4internet - Verein zur Steigerung der digitalen Kompetenzen in Österreich (fit4internet) 1125000
Adisseo France SAS 1125000
Mémorial de la Shoah 1125000
International Step by Step Association (ISSA) 1125000
Autorità di Sistema portuale del Mar Tirreno Settentrionale (ADSP MTS) 1125000
SANOFI 1125000
alchemia-nova GmbH (alchemia-nova) 1125000
ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΡΕΥΝΑΣ (ΙΤΕ - FORTH) 1125000
EURALIA 1125000
NextChem - Maire Tecnimont Group 1125000
European Network of National Human Rights Institutions (ENNHRI) 1125000
Vereniging van Waterbouwers 1125000
Wirtschaftsverband Stahl- und Metallverarbeitung e.V. (WSM) 1125000
Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP) 1125000
United Cities and Local Governments - Asia Pacific (UCLG ASPAC) 1125000
Philip Morris International Inc. (PMI) 1125000
Association Française de la Gestion financière (AFG) 1125000
CARES srcl - Osservatorio di Pavia (OdP) 1125000
AERNNOVA (ANN) 1125000
Zero Waste Europe (ZWE) 1125000
"Athena" Research and Innovation Center in Information, Communication and Knowledge Technologies (ATHENA RC) 1125000
ITTI Sp. z o.o. (ITTI) 1125000
HELLENIC FINANCIAL STABILITY FUND (HFSF) 1125000
Granta Design Ltd 1125000
Deutscher Franchiseverband e.V. 1125000
Rothman & Roman Ltd. (RR Ltd.) 1125000
Frequentis AG (Frequentis) 1125000
Mediterranean Protected Areas Network (MedPAN) 1125000
Warning: Removed 434 rows containing non-finite outside the scale range (`stat_bin()`).
Removed 434 rows containing non-finite outside the scale range (`stat_bin()`).

Bourse de l’UE

Characteristic N = 12,9651
Has_EU_grant
    0 10,262 (79%)
    1 2,703 (21%)
1 n (%)

Bourses en fonction des groupes d’experts

Characteristic 0
N = 10,7681
1
N = 2,1971
p-value2
Has_EU_grant

<0.001
    0 8,783 (82%) 1,479 (67%)
    1 1,985 (18%) 718 (33%)
1 n (%)
2 Pearson’s Chi-squared test
                  OR  2.5 % 97.5 %         p    
Fisher's test 2.1479 1.9373 2.3803 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Le chargement a nécessité le package : carData
lattice theme set by effectsTheme()
See ?effectsTheme for details.
Resized limits to included dashed line in forest panel
Warning in recalculate_width_panels(panel_positions, mapped_text = mapped_text,
: Unable to resize forest panel to be smaller than its heading; consider a
smaller text size
`height` was translated to `width`.

Meetings

Nombre de rendez-vous avec la Commission
Characteristic N = 12,9651
RECO_Meetings
    0 7,963 (61%)
    1 1,715 (13%)
    2 761 (5.9%)
    3 465 (3.6%)
    4-5 519 (4.0%)
    6-10 582 (4.5%)
    11-20 459 (3.5%)
    20 et + 501 (3.9%)
1 n (%)

Meetings en fonction des groupes d’experts

Proportion d'organisation ayant eu un meeting par rapport à la participation à un groupe d'expert
Characteristic In_Expert_groups
N = 2,1971
Out_EG
N = 10,7681
Has_Meetings

    Meeting 1,157 (53%) 3,845 (36%)
    No_meeting 1,040 (47%) 6,923 (64%)
1 n (%)
Warning in recalculate_width_panels(panel_positions, mapped_text = mapped_text,
: Unable to resize forest panel to be smaller than its heading; consider a
smaller text size
`height` was translated to `width`.

EP.passes

In InterGroup

Characteristic N = 12,9651
In_intergroup
    0 10,694 (82%)
    1 2,271 (18%)
1 n (%)

Intergroupe en fonction des groupes experts

Characteristic 0
N = 10,7681
1
N = 2,1971
In_intergroup

    0 8,987 (83%) 1,707 (78%)
    1 1,781 (17%) 490 (22%)
1 n (%)

[1] 1.147468e-10
                         TR22Full$In_intergroup
TR22Full$In_Expert_groups         0         1
                        0  6.476918 -6.476918
                        1 -6.476918  6.476918
                  OR  2.5 % 97.5 %         p    
Fisher's test 1.4484 1.2914 1.6228 2.551e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Resized limits to included dashed line in forest panel
`height` was translated to `width`.

2. Détails en fonction du type d’organisations

Type d'organisation
Dans le registre de transparence de 2022
Characteristic 0
N = 10,7681
1
N = 2,1971
Subsection

    Academic institutions 299 (2.8%) 66 (3.0%)
    Associations and networks of public authorities 8 (<0.1%) 1 (<0.1%)
    Companies & groups 2,497 (23%) 410 (19%)
    Entities, offices or networks established by third countries 1 (<0.1%) 0 (0%)
    Law firms 86 (0.8%) 8 (0.4%)
    Non-governmental organisations, platforms and networks and similar 2,933 (27%) 594 (27%)
    Organisations representing churches and religious communities 54 (0.5%) 1 (<0.1%)
    Other organisations 284 (2.6%) 45 (2.0%)
    Other organisations, public or mixed entities 12 (0.1%) 2 (<0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 233 (2.2%) 43 (2.0%)
    Other sub-national public authorities 85 (0.8%) 6 (0.3%)
    Professional consultancies 550 (5.1%) 30 (1.4%)
    Regional structures 99 (0.9%) 11 (0.5%)
    Self-employed individuals 222 (2.1%) 7 (0.3%)
    Think tanks and research institutions 506 (4.7%) 95 (4.3%)
    Trade and business associations 2,036 (19%) 678 (31%)
    Trade unions and professional associations 807 (7.5%) 183 (8.3%)
    Transnational associations and networks of public regional or other subnational authorities 56 (0.5%) 17 (0.8%)
1 n (%)

On ne garde pas des analyses suivantes les organisations suivantes :

  • “Entities, offices or networks established by third countries”

  • “Self-employed individuals”

  • “Organisations representing churches and religious communities”

  • “Law firms”

Parce qu’elles représentent trop peu d’individus, en particulier dans les groupes experts.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

ETP

ETP en fonction de l'organisation
Subsection n_ETP Percent mean_orga nb_orga
Non-governmental organisations, platforms and networks and similar 7824.75 30.93 2.218528 3527
Trade and business associations 4876.75 19.28 1.796887 2714
Companies & groups 4264.75 16.86 1.467062 2907
Think tanks and research institutions 1989.75 7.86 3.310732 601
Professional consultancies 1800.00 7.11 3.103448 580
Trade unions and professional associations 1537.50 6.08 1.553030 990
Academic institutions 874.25 3.46 2.395205 365
Other public or mixed entities, created by law whose purpose is to act in the public interest 623.50 2.46 2.259058 276
Other organisations 516.50 2.04 1.569909 329
Regional structures 344.00 1.36 3.127273 110
Other sub-national public authorities 287.00 1.13 3.153846 91
Transnational associations and networks of public regional or other subnational authorities 259.00 1.02 3.547945 73
Other organisations, public or mixed entities 60.50 0.24 4.321429 14
Associations and networks of public authorities 41.50 0.16 4.611111 9

En fonction de l’appartenance à un groupe expert

`summarise()` has grouped output by 'In_Expert_groups'. You can override using
the `.groups` argument.
Nombre d'ETP dans les organisations
En fonction du type d'organisations
In_Expert_groups n min q1 med q3 max Mean.FTE sd.FTE
Academic institutions
0 299 0.25 0.50 1.00 2.50 25.75 2.352843 3.436517
1 66 0.25 0.50 1.00 2.00 46.00 2.587121 6.279468
Associations and networks of public authorities
0 8 0.50 1.00 1.50 5.12 15.00 4.000000 4.978525
1 1 9.50 9.50 9.50 9.50 9.50 9.500000 NA
Companies & groups
0 2497 0.00 0.25 0.75 1.50 54.50 1.381558 2.488749
1 410 0.00 0.50 1.25 2.50 19.00 1.987805 2.429414
Non-governmental organisations, platforms and networks and similar
0 2933 0.00 0.25 1.00 2.25 43.00 2.033754 3.302657
1 594 0.00 0.50 1.50 3.75 39.75 3.130892 4.541640
Other organisations
0 284 0.25 0.25 0.75 1.50 32.00 1.519366 2.866751
1 45 0.25 0.50 1.25 2.25 11.00 1.888889 2.340088
Other organisations, public or mixed entities
0 12 0.25 0.25 1.50 6.25 23.00 4.645833 6.751648
1 2 0.50 1.44 2.38 3.31 4.25 2.375000 2.651650
Other public or mixed entities, created by law whose purpose is to act in the public interest
0 233 0.25 0.50 1.00 2.75 39.00 2.351931 4.187878
1 43 0.25 0.25 1.00 1.38 15.00 1.755814 2.890094
Other sub-national public authorities
0 85 0.25 0.50 1.50 4.50 19.00 3.111765 3.787610
1 6 0.25 0.50 1.38 5.81 12.00 3.750000 4.819232
Professional consultancies
0 550 0.25 0.50 1.00 3.00 48.50 3.159091 5.758629
1 30 0.25 0.25 0.50 1.00 21.25 2.083333 4.567187
Regional structures
0 99 0.25 0.75 2.00 3.38 21.50 2.868687 3.471705
1 11 0.25 1.62 3.00 6.62 21.50 5.454545 6.627422
Think tanks and research institutions
0 506 0.25 0.50 1.50 3.50 37.00 3.227273 5.037727
1 95 0.25 0.50 1.75 5.12 23.50 3.755263 4.669955
Trade and business associations
0 2036 0.00 0.25 0.75 1.75 40.00 1.408399 1.947993
1 678 0.25 0.75 1.75 3.50 41.75 2.963496 4.113876
Trade unions and professional associations
0 807 0.00 0.25 0.75 1.50 16.50 1.273544 1.773085
1 183 0.25 0.75 1.50 3.75 23.25 2.785519 3.459057
Transnational associations and networks of public regional or other subnational authorities
0 56 0.25 0.75 2.00 4.62 38.00 3.946429 5.965757
1 17 0.25 1.00 1.75 3.00 8.50 2.235294 2.086921

Characteristic
In_Expert_groups
No_EG
N = 2,1811 p-value2 N = 10,4051 p-value2
Subsection
<0.001
<0.001
    Academic institutions 1.00 (0.50, 2.00)
1.00 (0.50, 2.50)
    Associations and networks of public authorities 9.50 (9.50, 9.50)
1.50 (1.00, 5.75)
    Companies & groups 1.25 (0.50, 2.50)
0.75 (0.25, 1.50)
    Non-governmental organisations, platforms and networks and similar 1.50 (0.50, 3.75)
1.00 (0.25, 2.25)
    Other organisations 1.25 (0.50, 2.25)
0.75 (0.25, 1.50)
    Other organisations, public or mixed entities 2.38 (0.50, 4.25)
1.50 (0.25, 6.50)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 1.00 (0.25, 1.50)
1.00 (0.50, 2.75)
    Other sub-national public authorities 1.38 (0.25, 7.25)
1.50 (0.50, 4.50)
    Professional consultancies 0.50 (0.25, 1.00)
1.00 (0.50, 3.00)
    Regional structures 3.00 (1.25, 9.50)
2.00 (0.75, 3.50)
    Think tanks and research institutions 1.75 (0.50, 5.25)
1.50 (0.50, 3.50)
    Trade and business associations 1.75 (0.75, 3.50)
0.75 (0.25, 1.75)
    Trade unions and professional associations 1.50 (0.75, 3.75)
0.75 (0.25, 1.50)
    Transnational associations and networks of public regional or other subnational authorities 1.75 (1.00, 3.00)
2.00 (0.75, 4.75)
1 Members.FTE: Median (Q1, Q3)
2 Kruskal-Wallis rank sum test

Bruxelles

The following errors were returned during `add_p()`:
✖ For variable `Subsection` (`Bruxel`) and "estimate", "p.value", "conf.low",
  and "conf.high" statistics: FEXACT erreur 7(location). LDSTP=16290 est trop
  petit pour ce problème, (pastp=103.306, ipn_0:=ipoin[itp=348]=16164,
  stp[ipn_0]=101.782). Augmentez la taille de l’environnement de travail ou
  considérez l’utilisation de ‘simulate.p.value=TRUE’.
Characteristic In_Bruxel
N = 3,2401
No_Bruxel
N = 9,3461
p-value
Subsection


    Academic institutions 44 (1.4%) 321 (3.4%)
    Associations and networks of public authorities 1 (<0.1%) 8 (<0.1%)
    Companies & groups 493 (15%) 2,414 (26%)
    Non-governmental organisations, platforms and networks and similar 880 (27%) 2,647 (28%)
    Other organisations 88 (2.7%) 241 (2.6%)
    Other organisations, public or mixed entities 0 (0%) 14 (0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 53 (1.6%) 223 (2.4%)
    Other sub-national public authorities 35 (1.1%) 56 (0.6%)
    Professional consultancies 238 (7.3%) 342 (3.7%)
    Regional structures 47 (1.5%) 63 (0.7%)
    Think tanks and research institutions 136 (4.2%) 465 (5.0%)
    Trade and business associations 957 (30%) 1,757 (19%)
    Trade unions and professional associations 244 (7.5%) 746 (8.0%)
    Transnational associations and networks of public regional or other subnational authorities 24 (0.7%) 49 (0.5%)
1 n (%)

En fonction des groupes experts

The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`Bruxel`) and "estimate", "p.value", "conf.low",
  and "conf.high" statistics: FEXACT erreur 7(location). LDSTP=18240 est trop
  petit pour ce problème, (pastp=20.2247, ipn_0:=ipoin[itp=189]=18037,
  stp[ipn_0]=15.8998). Augmentez la taille de l’environnement de travail ou
  considérez l’utilisation de ‘simulate.p.value=TRUE’.
The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`Bruxel`) and "estimate", "p.value", "conf.low",
  and "conf.high" statistics: FEXACT erreur 7(location). LDSTP=16680 est trop
  petit pour ce problème, (pastp=99.0431, ipn_0:=ipoin[itp=176]=1569,
  stp[ipn_0]=72.8882). Augmentez la taille de l’environnement de travail ou
  considérez l’utilisation de ‘simulate.p.value=TRUE’.
Characteristic
In_Expert_groups
No_EG
In_Bruxel
N = 9571
No_Bruxel
N = 1,2241
p-value In_Bruxel
N = 2,2831
No_Bruxel
N = 8,1221
p-value
Subsection





    Academic institutions 9 (0.9%) 57 (4.7%)
35 (1.5%) 264 (3.3%)
    Associations and networks of public authorities 0 (0%) 1 (<0.1%)
1 (<0.1%) 7 (<0.1%)
    Companies & groups 129 (13%) 281 (23%)
364 (16%) 2,133 (26%)
    Non-governmental organisations, platforms and networks and similar 236 (25%) 358 (29%)
644 (28%) 2,289 (28%)
    Other organisations 17 (1.8%) 28 (2.3%)
71 (3.1%) 213 (2.6%)
    Other organisations, public or mixed entities 0 (0%) 2 (0.2%)
0 (0%) 12 (0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 10 (1.0%) 33 (2.7%)
43 (1.9%) 190 (2.3%)
    Other sub-national public authorities 3 (0.3%) 3 (0.2%)
32 (1.4%) 53 (0.7%)
    Professional consultancies 4 (0.4%) 26 (2.1%)
234 (10%) 316 (3.9%)
    Regional structures 6 (0.6%) 5 (0.4%)
41 (1.8%) 58 (0.7%)
    Think tanks and research institutions 24 (2.5%) 71 (5.8%)
112 (4.9%) 394 (4.9%)
    Trade and business associations 426 (45%) 252 (21%)
531 (23%) 1,505 (19%)
    Trade unions and professional associations 82 (8.6%) 101 (8.3%)
162 (7.1%) 645 (7.9%)
    Transnational associations and networks of public regional or other subnational authorities 11 (1.1%) 6 (0.5%)
13 (0.6%) 43 (0.5%)
1 n (%)

Budget

Warning: Removed 6 rows containing non-finite outside the scale range
(`stat_boxplot()`).

Characteristic
In_Expert_groups
No_EG
N = 2,1811 p-value2 N = 10,4051 p-value2
Subsection
<0.001
<0.001
    Academic institutions 37,500 (9,999, 75,000)
37,500 (9,999, 150,000)
    Associations and networks of public authorities 150,000 (150,000, 150,000)
150,000 (75,000, 400,000)
    Companies & groups 150,000 (17,500, 350,000)
37,500 (9,999, 150,000)
    Non-governmental organisations, platforms and networks and similar 75,000 (17,500, 250,000)
17,500 (9,999, 75,000)
    Other organisations 75,000 (17,500, 150,000)
17,500 (9,999, 75,000)
    Other organisations, public or mixed entities 80,000 (9,999, 150,000)
75,000 (13,750, 600,000)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 17,500 (9,999, 150,000)
75,000 (17,500, 150,000)
    Other sub-national public authorities 75,000 (9,999, 250,000)
75,000 (9,999, 250,000)
    Professional consultancies 17,500 (9,999, 75,000)
37,500 (9,999, 150,000)
    Regional structures 250,000 (9,999, 750,000)
75,000 (9,999, 250,000)
    Think tanks and research institutions 75,000 (9,999, 450,000)
37,500 (9,999, 150,000)
    Trade and business associations 150,000 (37,500, 350,000)
37,500 (9,999, 150,000)
    Trade unions and professional associations 75,000 (17,500, 350,000)
17,500 (9,999, 75,000)
    Transnational associations and networks of public regional or other subnational authorities 150,000 (75,000, 150,000)
37,500 (9,999, 250,000)
1 Lobbying.cost: Median (Q1, Q3)
2 Kruskal-Wallis rank sum test
`summarise()` has grouped output by 'In_Expert_groups'. You can override using
the `.groups` argument.
Nombre d'ETP dans les organisations
En fonction du type d'organisations
In_Expert_groups n min q1 med q3 max Mean.FTE sd.FTE
Academic institutions
0 299 0 9999.00 37500.0 150000.0 1875000 119640.18 206999.06
1 66 9999 9999.00 37500.0 75000.0 1125000 104886.09 186138.75
Associations and networks of public authorities
0 8 9999 75000.00 150000.0 325000.0 1125000 298124.88 373391.30
1 1 150000 150000.00 150000.0 150000.0 150000 150000.00 NA
Companies & groups
0 2497 NA 9999.00 37500.0 150000.0 NA NA NA
1 410 NA 17500.00 150000.0 350000.0 NA NA NA
Non-governmental organisations, platforms and networks and similar
0 2933 NA 9999.00 17500.0 75000.0 NA NA NA
1 594 NA 17500.00 75000.0 250000.0 NA NA NA
Other organisations
0 284 0 9999.00 17500.0 75000.0 1125000 92587.69 175133.86
1 45 0 17500.00 75000.0 150000.0 850000 136333.11 182374.49
Other organisations, public or mixed entities
0 12 9999 15624.75 75000.0 525000.0 1875000 356041.42 564482.49
1 2 9999 44999.25 79999.5 114999.8 150000 79999.50 98995.66
Other public or mixed entities, created by law whose purpose is to act in the public interest
0 233 0 17500.00 75000.0 150000.0 3375000 171029.82 335195.64
1 43 0 9999.00 17500.0 150000.0 1875000 150755.44 337970.53
Other sub-national public authorities
0 85 0 9999.00 75000.0 250000.0 1875000 200617.38 312434.19
1 6 9999 26249.25 75000.0 206250.0 1125000 257499.67 433990.44
Professional consultancies
0 550 0 9999.00 37500.0 150000.0 6875000 263627.05 755215.43
1 30 9999 9999.00 17500.0 75000.0 1125000 119416.30 255887.47
Regional structures
0 99 0 13749.50 75000.0 250000.0 1625000 192146.26 269447.33
1 11 9999 79999.50 250000.0 550000.0 2125000 489090.64 640721.76
Think tanks and research institutions
0 506 0 9999.00 37500.0 150000.0 7125000 231531.35 607361.56
1 95 0 9999.00 75000.0 450000.0 9875000 397894.51 1082787.58
Trade and business associations
0 2036 0 9999.00 37500.0 150000.0 5125000 121619.35 238063.79
1 678 0 37500.00 150000.0 350000.0 9125000 337507.27 693660.28
Trade unions and professional associations
0 807 0 9999.00 17500.0 75000.0 1625000 76709.70 150028.28
1 183 9999 17500.00 75000.0 350000.0 1875000 205587.25 283446.40
Transnational associations and networks of public regional or other subnational authorities
0 56 0 9999.00 37500.0 250000.0 1125000 195267.62 294468.34
1 17 9999 75000.00 150000.0 150000.0 1125000 260441.12 346251.44

Bourse de l’UE

The following errors were returned during `add_p()`:
✖ For variable `Subsection` (`Has_EU_grant`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=16290 est trop petit pour ce problème, (pastp=67.6208,
  ipn_0:=ipoin[itp=17]=1, stp[ipn_0]=51.6559). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
Characteristic Has_grant
N = 2,6901
No_grant
N = 9,8961
p-value
Subsection


    Academic institutions 249 (9.3%) 116 (1.2%)
    Associations and networks of public authorities 0 (0%) 9 (<0.1%)
    Companies & groups 515 (19%) 2,392 (24%)
    Non-governmental organisations, platforms and networks and similar 1,024 (38%) 2,503 (25%)
    Other organisations 54 (2.0%) 275 (2.8%)
    Other organisations, public or mixed entities 0 (0%) 14 (0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 104 (3.9%) 172 (1.7%)
    Other sub-national public authorities 37 (1.4%) 54 (0.5%)
    Professional consultancies 44 (1.6%) 536 (5.4%)
    Regional structures 33 (1.2%) 77 (0.8%)
    Think tanks and research institutions 241 (9.0%) 360 (3.6%)
    Trade and business associations 259 (9.6%) 2,455 (25%)
    Trade unions and professional associations 93 (3.5%) 897 (9.1%)
    Transnational associations and networks of public regional or other subnational authorities 37 (1.4%) 36 (0.4%)
1 n (%)

En fonction des groupes experts

The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`Has_EU_grant`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=18240 est trop petit pour ce problème, (pastp=18.9612,
  ipn_0:=ipoin[itp=176]=940, stp[ipn_0]=19.642). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`Has_EU_grant`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=16680 est trop petit pour ce problème, (pastp=82.5933,
  ipn_0:=ipoin[itp=68]=8321, stp[ipn_0]=61.036). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
Characteristic
In_Expert_groups
No_EG
Has_grant
N = 7181
No_grant
N = 1,4631
p-value Has_grant
N = 1,9721
No_grant
N = 8,4331
p-value
Subsection





    Academic institutions 46 (6.4%) 20 (1.4%)
203 (10%) 96 (1.1%)
    Associations and networks of public authorities 0 (0%) 1 (<0.1%)
0 (0%) 8 (<0.1%)
    Companies & groups 143 (20%) 267 (18%)
372 (19%) 2,125 (25%)
    Non-governmental organisations, platforms and networks and similar 255 (36%) 339 (23%)
769 (39%) 2,164 (26%)
    Other organisations 16 (2.2%) 29 (2.0%)
38 (1.9%) 246 (2.9%)
    Other organisations, public or mixed entities 0 (0%) 2 (0.1%)
0 (0%) 12 (0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 21 (2.9%) 22 (1.5%)
83 (4.2%) 150 (1.8%)
    Other sub-national public authorities 1 (0.1%) 5 (0.3%)
36 (1.8%) 49 (0.6%)
    Professional consultancies 9 (1.3%) 21 (1.4%)
35 (1.8%) 515 (6.1%)
    Regional structures 5 (0.7%) 6 (0.4%)
28 (1.4%) 71 (0.8%)
    Think tanks and research institutions 57 (7.9%) 38 (2.6%)
184 (9.3%) 322 (3.8%)
    Trade and business associations 112 (16%) 566 (39%)
147 (7.5%) 1,889 (22%)
    Trade unions and professional associations 42 (5.8%) 141 (9.6%)
51 (2.6%) 756 (9.0%)
    Transnational associations and networks of public regional or other subnational authorities 11 (1.5%) 6 (0.4%)
26 (1.3%) 30 (0.4%)
1 n (%)

Meetings

Characteristic N = 12,5861
Subsection
    Academic institutions 0.0 (0.0 - 1.0) | 3.0 - 18.0
    Associations and networks of public authorities 0.0 (0.0 - 2.0) | 5.0 - 5.0
    Companies & groups 0.0 (0.0 - 3.0) | 14.0 - 352.0
    Non-governmental organisations, platforms and networks and similar 0.0 (0.0 - 1.0) | 4.0 - 277.0
    Other organisations 0.0 (0.0 - 1.0) | 4.0 - 57.0
    Other organisations, public or mixed entities 0.0 (0.0 - 3.0) | 10.0 - 14.0
    Other public or mixed entities, created by law whose purpose is to act in the public interest 0.0 (0.0 - 1.0) | 3.0 - 77.0
    Other sub-national public authorities 0.0 (0.0 - 1.0) | 4.0 - 63.0
    Professional consultancies 0.0 (0.0 - 2.0) | 7.0 - 93.0
    Regional structures 0.0 (0.0 - 1.0) | 3.0 - 26.0
    Think tanks and research institutions 0.0 (0.0 - 2.0) | 8.0 - 93.0
    Trade and business associations 0.0 (0.0 - 2.0) | 11.0 - 417.0
    Trade unions and professional associations 0.0 (0.0 - 1.0) | 4.0 - 234.0
    Transnational associations and networks of public regional or other subnational authorities 0.0 (0.0 - 1.0) | 6.0 - 22.0
1 Meetings: Median (Q1 - Q3) | 90% Centile - Max

En fonction des groupes experts

Characteristic
In_Expert_groups
No_EG
N = 2,1811 p-value2 N = 10,4051 p-value2
Subsection
<0.001
<0.001
    Academic institutions 0 (0 - 1) | 3 - 18
0.0 (0.0 - 1.0) | 3.0 - 18.0
    Associations and networks of public authorities 0 (0 - 0) | 0 - 0
0.5 (0.0 - 2.5) | 5.0 - 5.0
    Companies & groups 1 (0 - 15) | 42 - 277
0.0 (0.0 - 2.0) | 9.0 - 352.0
    Non-governmental organisations, platforms and networks and similar 0 (0 - 4) | 17 - 277
0.0 (0.0 - 1.0) | 3.0 - 129.0
    Other organisations 0 (0 - 2) | 14 - 57
0.0 (0.0 - 1.0) | 3.0 - 49.0
    Other organisations, public or mixed entities 1 (0 - 1) | 1 - 1
0.0 (0.0 - 3.0) | 10.0 - 14.0
    Other public or mixed entities, created by law whose purpose is to act in the public interest 0 (0 - 0) | 4 - 56
0.0 (0.0 - 1.0) | 3.0 - 77.0
    Other sub-national public authorities 0 (0 - 12) | 63 - 63
0.0 (0.0 - 1.0) | 3.0 - 16.0
    Professional consultancies 0 (0 - 0) | 6 - 20
0.0 (0.0 - 2.0) | 7.0 - 93.0
    Regional structures 1 (0 - 3) | 17 - 26
0.0 (0.0 - 1.0) | 2.0 - 9.0
    Think tanks and research institutions 0 (0 - 2) | 10 - 35
0.0 (0.0 - 2.0) | 8.0 - 93.0
    Trade and business associations 2 (0 - 12) | 34 - 417
0.0 (0.0 - 1.0) | 5.0 - 73.0
    Trade unions and professional associations 2 (0 - 8) | 16 - 234
0.0 (0.0 - 1.0) | 2.0 - 76.0
    Transnational associations and networks of public regional or other subnational authorities 0 (0 - 10) | 18 - 22
0.0 (0.0 - 1.0) | 3.0 - 12.0
1 Meetings: Median (Q1 - Q3) | 90% Centile - Max
2 Kruskal-Wallis rank sum test

EP.Passes

Characteristic N = 12,5861
Subsection
    Academic institutions 2 (1 - 10) | 22 - 37 / 42
    Associations and networks of public authorities 9 (9 - 9) | 9 - 9 / 1
    Companies & groups 7 (2 - 19) | 40 - 210 / 899
    Non-governmental organisations, platforms and networks and similar 8 (3 - 20) | 44 - 332 / 934
    Other organisations 7 (2 - 14) | 30 - 132 / 76
    Other organisations, public or mixed entities 16 (1 - 51) | 51 - 51 / 3
    Other public or mixed entities, created by law whose purpose is to act in the public interest 6 (2 - 9) | 19 - 34 / 58
    Other sub-national public authorities 2 (1 - 27) | 82 - 90 / 16
    Professional consultancies 12 (3 - 38) | 131 - 676 / 268
    Regional structures 7 (2 - 10) | 62 - 80 / 22
    Think tanks and research institutions 7 (2 - 23) | 44 - 79 / 134
    Trade and business associations 10 (3 - 27) | 51 - 308 / 903
    Trade unions and professional associations 6 (2 - 18) | 44 - 156 / 242
    Transnational associations and networks of public regional or other subnational authorities 9 (3 - 17) | 32 - 65 / 18
1 all.EP.passes: Median (Q1 - Q3) | 90% Centile - Max / N Non-missing

En fonction des groupes experts

Warning: Removed 8970 rows containing non-finite outside the scale range
(`stat_boxplot()`).

The following warnings were returned during `tbl_strata()`:
! For variable `all.EP.passes` (`Subsection = "Associations and networks of
  public authorities"`) and "max" statistic: aucun argument pour max ; -Inf est
  renvoyé
! For variable `all.EP.passes` (`Subsection = "Other organisations, public or
  mixed entities"`) and "max" statistic: aucun argument pour max ; -Inf est
  renvoyé
Characteristic
In_Expert_groups
No_EG
N = 2,1811 p-value2 N = 10,4051 p-value2
Subsection
0.7
<0.001
    Academic institutions 17 (12 - 29) | 37 - 37 / 5
2 (1 - 7) | 16 - 28 / 37
    Associations and networks of public authorities NA (NA - NA) | NA - -Inf / 0
9 (9 - 9) | 9 - 9 / 1
    Companies & groups 18 (7 - 39) | 61 - 153 / 188
6 (2 - 14) | 32 - 210 / 711
    Non-governmental organisations, platforms and networks and similar 19 (6 - 43) | 74 - 332 / 213
6 (2 - 15) | 33 - 135 / 721
    Other organisations 11 (2 - 20) | 76 - 132 / 18
7 (2 - 12) | 19 - 112 / 58
    Other organisations, public or mixed entities NA (NA - NA) | NA - -Inf / 0
16 (1 - 51) | 51 - 51 / 3
    Other public or mixed entities, created by law whose purpose is to act in the public interest 8 (1 - 10) | 24 - 24 / 6
6 (3 - 9) | 18 - 34 / 52
    Other sub-national public authorities 58 (1 - 82) | 82 - 82 / 3
2 (1 - 4) | 50 - 90 / 13
    Professional consultancies 7 (4 - 145) | 148 - 148 / 6
12 (3 - 37) | 123 - 676 / 262
    Regional structures 8 (3 - 62) | 68 - 68 / 5
6 (2 - 9) | 18 - 80 / 17
    Think tanks and research institutions 19 (5 - 35) | 57 - 67 / 22
7 (2 - 22) | 36 - 79 / 112
    Trade and business associations 18 (6 - 40) | 72 - 308 / 405
6 (2 - 17) | 32 - 119 / 498
    Trade unions and professional associations 15 (4 - 44) | 61 - 156 / 79
4 (2 - 11) | 23 - 67 / 163
    Transnational associations and networks of public regional or other subnational authorities 20 (13 - 32) | 65 - 65 / 6
6 (3 - 11) | 17 - 24 / 12
1 all.EP.passes: Median (Q1 - Q3) | 90% Centile - Max / N Non-missing
2 Kruskal-Wallis rank sum test

Intergroupe

En fonction des groupes experts

The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`In_intergroup`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=18240 est trop petit pour ce problème, (pastp=48.8158,
  ipn_0:=ipoin[itp=199]=283, stp[ipn_0]=45.8746). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`In_intergroup`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=16680 est trop petit pour ce problème, (pastp=86.1911,
  ipn_0:=ipoin[itp=476]=5109, stp[ipn_0]=78.2866). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
Characteristic
In_Expert_groups
No_EG
Has_intergroup
N = 4901
No_intergroup
N = 1,6911
p-value Has_intergroup
N = 1,7011
No_intergroup
N = 8,7041
p-value
Subsection





    Academic institutions 9 (1.8%) 57 (3.4%)
41 (2.4%) 258 (3.0%)
    Associations and networks of public authorities 0 (0%) 1 (<0.1%)
0 (0%) 8 (<0.1%)
    Companies & groups 102 (21%) 308 (18%)
369 (22%) 2,128 (24%)
    Non-governmental organisations, platforms and networks and similar 144 (29%) 450 (27%)
625 (37%) 2,308 (27%)
    Other organisations 6 (1.2%) 39 (2.3%)
37 (2.2%) 247 (2.8%)
    Other organisations, public or mixed entities 0 (0%) 2 (0.1%)
0 (0%) 12 (0.1%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 5 (1.0%) 38 (2.2%)
35 (2.1%) 198 (2.3%)
    Other sub-national public authorities 0 (0%) 6 (0.4%)
16 (0.9%) 69 (0.8%)
    Professional consultancies 4 (0.8%) 26 (1.5%)
75 (4.4%) 475 (5.5%)
    Regional structures 4 (0.8%) 7 (0.4%)
16 (0.9%) 83 (1.0%)
    Think tanks and research institutions 18 (3.7%) 77 (4.6%)
73 (4.3%) 433 (5.0%)
    Trade and business associations 152 (31%) 526 (31%)
279 (16%) 1,757 (20%)
    Trade unions and professional associations 43 (8.8%) 140 (8.3%)
120 (7.1%) 687 (7.9%)
    Transnational associations and networks of public regional or other subnational authorities 3 (0.6%) 14 (0.8%)
15 (0.9%) 41 (0.5%)
1 n (%)

Resized limits to included dashed line in forest panel
`height` was translated to `width`.