TR 19 Resume

Introduction

Nous utilisons le registre de transparence de l’Union Européenne pour observer les caractéristiques des groupes d’intérêts qui interviennent auprès de la Commissions Européennes, et en particulier pour observer les différences entre les groupes qui sont dans des groupes d’intérêts et ceux qui ne le sont pas.

Data

Commençons tout d’abord par détailler les données :


Attachement du package : 'dplyr'
Les objets suivants sont masqués depuis 'package:stats':

    filter, lag
Les objets suivants sont masqués depuis 'package:base':

    intersect, setdiff, setequal, union

Tableau Récapitulatif des principales variables

Ressources par catégorie
En 2019 - Pourcentage ligne
Characteristic Academic institutions
N = 3341
Companies & groups
N = 2,3401
Law firms
N = 1141
Non-governmental organisations, platforms and networks and similar
N = 3,1711
Organisations representing churches and religious communities
N = 531
Other organisations
N = 3141
Other public or mixed entities, created by law whose purpose is to act in the public interest
N = 2791
Other sub-national public authorities
N = 1011
Professional consultancies
N = 6631
Regional structures
N = 1111
Self-employed consultants
N = 3181
Think tanks and research institutions
N = 5871
Trade and business associations
N = 2,4501
Trade unions and professional associations
N = 9091
Transnational associations and networks of public regional or other sub-national authorities
N = 861
Overall
N = 11,8301
Members 3.0 (1.0, 8.0) - max = 86.0) 2.0 (1.0, 4.0) - max = 45.0) 2.0 (1.0, 4.0) - max = 25.0) 3.0 (1.0, 5.0) - max = 100.0) 2.0 (2.0, 5.0) - max = 11.0) 2.0 (1.0, 4.0) - max = 25.0) 3.0 (1.0, 5.0) - max = 50.0) 3.0 (1.0, 6.0) - max = 80.0) 2.0 (1.0, 4.0) - max = 60.0) 3.0 (2.0, 6.0) - max = 46.0) 1.0 (1.0, 1.0) - max = 11.0) 4.0 (2.0, 8.0) - max = 165.0) 2.0 (1.0, 4.0) - max = 84.0) 2.0 (1.0, 4.0) - max = 30.0) 3.0 (1.0, 5.0) - max = 32.0) 2.0 (1.0, 5.0) - max = 165.0)
Members.FTE 1.00 (0.50, 3.00) - max = 86.00) 0.75 (0.25, 1.75) - max = 45.00) 0.75 (0.25, 1.50) - max = 11.50) 1.00 (0.50, 2.75) - max = 54.00) 1.00 (0.75, 2.50) - max = 7.50) 1.00 (0.50, 2.00) - max = 15.25) 1.00 (0.50, 3.00) - max = 39.00) 2.00 (0.50, 5.00) - max = 43.75) 1.00 (0.50, 2.75) - max = 41.25) 2.50 (1.00, 5.00) - max = 23.00) 0.75 (0.25, 1.00) - max = 9.75) 1.50 (0.50, 4.00) - max = 91.50) 1.00 (0.50, 2.00) - max = 49.00) 1.00 (0.25, 2.00) - max = 22.25) 1.50 (0.50, 3.50) - max = 11.25) 1.00 (0.50, 2.25) - max = 91.50)
Number.of.EP.accredited.persons 1.00 (1.00, 3.00) - max = 6.00) 2.00 (1.00, 3.00) - max = 21.00) 3.00 (1.00, 5.00) - max = 9.00) 2.00 (1.00, 4.00) - max = 26.00) 2.00 (1.00, 4.00) - max = 6.00) 2.00 (1.00, 2.00) - max = 13.00) 2.00 (1.00, 3.00) - max = 5.00) 3.00 (1.00, 4.00) - max = 6.00) 2.00 (1.00, 6.00) - max = 58.00) 4.00 (1.50, 5.00) - max = 12.00) 1.00 (1.00, 1.00) - max = 2.00) 2.00 (1.00, 4.00) - max = 9.00) 2.00 (1.00, 3.00) - max = 24.00) 2.00 (1.00, 3.00) - max = 14.00) 2.00 (1.00, 2.00) - max = 4.00) 2.00 (1.00, 3.00) - max = 58.00)
    Unknown 310 1,841 91 2,582 29 269 256 94 469 103 245 498 1,901 782 69 9,539
Bruxel















    0 294 (3.5%) 1,834 (22%) 59 (0.7%) 2,285 (27%) 22 (0.3%) 228 (2.7%) 224 (2.7%) 63 (0.7%) 418 (5.0%) 61 (0.7%) 233 (2.8%) 444 (5.3%) 1,528 (18%) 673 (8.0%) 56 (0.7%) 8,422 (100%)
    1 40 (1.2%) 506 (15%) 55 (1.6%) 886 (26%) 31 (0.9%) 86 (2.5%) 55 (1.6%) 38 (1.1%) 245 (7.2%) 50 (1.5%) 85 (2.5%) 143 (4.2%) 922 (27%) 236 (6.9%) 30 (0.9%) 3,408 (100%)
In_intergroup















    0 324 (2.9%) 2,251 (20%) 113 (1.0%) 2,865 (26%) 42 (0.4%) 300 (2.7%) 268 (2.4%) 93 (0.8%) 631 (5.7%) 101 (0.9%) 298 (2.7%) 558 (5.1%) 2,268 (21%) 844 (7.7%) 70 (0.6%) 11,026 (100%)
    1 10 (1.2%) 89 (11%) 1 (0.1%) 306 (38%) 11 (1.4%) 14 (1.7%) 11 (1.4%) 8 (1.0%) 32 (4.0%) 10 (1.2%) 20 (2.5%) 29 (3.6%) 182 (23%) 65 (8.1%) 16 (2.0%) 804 (100%)
Has_EP_access















    0 310 (3.2%) 1,841 (19%) 91 (1.0%) 2,582 (27%) 29 (0.3%) 269 (2.8%) 256 (2.7%) 94 (1.0%) 469 (4.9%) 103 (1.1%) 245 (2.6%) 498 (5.2%) 1,901 (20%) 782 (8.2%) 69 (0.7%) 9,539 (100%)
    1 24 (1.0%) 499 (22%) 23 (1.0%) 589 (26%) 24 (1.0%) 45 (2.0%) 23 (1.0%) 7 (0.3%) 194 (8.5%) 8 (0.3%) 73 (3.2%) 89 (3.9%) 549 (24%) 127 (5.5%) 17 (0.7%) 2,291 (100%)
Has_EU_grants















    0 111 (1.2%) 1,905 (20%) 110 (1.2%) 2,296 (24%) 48 (0.5%) 262 (2.8%) 183 (1.9%) 60 (0.6%) 602 (6.4%) 79 (0.8%) 311 (3.3%) 350 (3.7%) 2,225 (24%) 838 (8.9%) 49 (0.5%) 9,429 (100%)
    1 223 (9.3%) 435 (18%) 4 (0.2%) 875 (36%) 5 (0.2%) 52 (2.2%) 96 (4.0%) 41 (1.7%) 61 (2.5%) 32 (1.3%) 7 (0.3%) 237 (9.9%) 225 (9.4%) 71 (3.0%) 37 (1.5%) 2,401 (100%)
In_EG















    0 268 (2.7%) 2,008 (21%) 103 (1.1%) 2,596 (27%) 53 (0.5%) 276 (2.8%) 228 (2.3%) 92 (0.9%) 632 (6.5%) 100 (1.0%) 303 (3.1%) 505 (5.2%) 1,818 (19%) 740 (7.6%) 63 (0.6%) 9,785 (100%)
    1 66 (3.2%) 332 (16%) 11 (0.5%) 575 (28%) 0 (0%) 38 (1.9%) 51 (2.5%) 9 (0.4%) 31 (1.5%) 11 (0.5%) 15 (0.7%) 82 (4.0%) 632 (31%) 169 (8.3%) 23 (1.1%) 2,045 (100%)
Nb_EG 1 (1, 1) - max = 4) 1 (1, 1) - max = 5) 1 (1, 1) - max = 1) 1 (1, 2) - max = 44) NA (NA, NA) - max = NA) 1 (1, 2) - max = 25) 1 (1, 1) - max = 7) 1 (1, 1) - max = 5) 1 (1, 1) - max = 5) 1 (1, 1) - max = 5) 1 (1, 1) - max = 1) 1 (1, 2) - max = 7) 1 (1, 3) - max = 51) 1 (1, 3) - max = 33) 1 (1, 2) - max = 5) 1 (1, 2) - max = 51)
    Unknown 268 2,008 103 2,596 53 276 228 92 632 100 303 505 1,818 740 63 9,785
1 Median (Q1, Q3) - max = 100% Centile) ; n (%)

I. Description des organisations

Type d'organisation
Dans le registre de transparence de 2019
Characteristic N = 11,8301
Subsection
    Academic institutions 334 (2.8%)
    Companies & groups 2,340 (20%)
    Law firms 114 (1.0%)
    Non-governmental organisations, platforms and networks and similar 3,171 (27%)
    Organisations representing churches and religious communities 53 (0.4%)
    Other organisations 314 (2.7%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 279 (2.4%)
    Other sub-national public authorities 101 (0.9%)
    Professional consultancies 663 (5.6%)
    Regional structures 111 (0.9%)
    Self-employed consultants 318 (2.7%)
    Think tanks and research institutions 587 (5.0%)
    Trade and business associations 2,450 (21%)
    Trade unions and professional associations 909 (7.7%)
    Transnational associations and networks of public regional or other sub-national authorities 86 (0.7%)
1 n (%)

ETP

   0%   10%   20%   30%   40%   50%   60%   70%   80%   90%  100% 
 0.25  0.25  0.25  0.50  0.75  1.00  1.25  2.00  2.75  5.00 91.50 

ETP en fonction des groupes d’expert

Le chargement a nécessité le package : grid
   (0,1]    (1,2]    (2,5]   (5,10] (10,100] 
    6612     2106     2061      709      342 
Characteristic 0
N = 9,7851
1
N = 2,0451
FTE_RECO

    (0,1] 5,776 (59%) 836 (41%)
    (1,2] 1,680 (17%) 426 (21%)
    (2,5] 1,571 (16%) 490 (24%)
    (5,10] 517 (5.3%) 192 (9.4%)
    (10,100] 241 (2.5%) 101 (4.9%)
1 n (%)
[1] 2.54046e-54

Bruxelles

Characteristic N = 11,8301
Bruxel
    0 8,422 (71%)
    1 3,408 (29%)
1 n (%)

Bruxelles en fonction des groupes d’experts

Characteristic 0
N = 9,7851
1
N = 2,0451
Bruxel

    0 7,313 (75%) 1,109 (54%)
    1 2,472 (25%) 936 (46%)
1 n (%)

[1] 3.411346e-77
              TR19Full$Bruxel
TR19Full$In_EG         0         1
             0  18.62363 -18.62363
             1 -18.62363  18.62363
                  OR  2.5 % 97.5 %         p    
Fisher's test 2.4966 2.2603 2.7576 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

L’Odds ratio nous permet de lire que si on ne s’intéresse qu’à la participation à des groupes d’expert et à la présence de bureau à Bruxelles, on a 3,5 plus de chance de participer à un GE si l’on est à Bruxelles.

Resized limits to included dashed line in forest panel
`height` was translated to `width`.

Budget

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
       0     9999    37500   164321   150000 12300000      775 
        0%        30%        40%        50%        60%        70%        80% 
       0.0     9999.0    17500.0    37500.0    75000.0   130442.4   179238.6 
       90%       100% 
  450000.0 12300000.0 

Budgets en fonction des groupes d’experts

Warning: Removed 775 rows containing non-finite outside the scale range
(`stat_boxplot()`).

$`0`
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
       0     9999    35000   136117   150000 10000000      749 

$`1`
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
       0    17500    75000   290550   344478 12300000       26 

    Welch Two Sample t-test

data:  Lobbying.cost by In_EG
t = -10.492, df = 2321.6, p-value < 2.2e-16
alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
95 percent confidence interval:
 -183295.9 -125569.8
sample estimates:
mean in group 0 mean in group 1 
       136116.7        290549.5 
Name Lobbying.cost
Unisystems Systèmes Informatiques 10000000
Instituto de Telecomunicações (IT) 7339567
Fleishman-Hillard 6875000
European Council on Foreign Relations (ECFR) 6875000
FTI Consulting Belgium 6875000
European Centre for Development Policy Management (ECDPM) 6375000
Burson Cohn & Wolfe Sprl (formerly Burson-Marsteller Sprl) (BCW) 6375000
The Brookings Institution 6375000
Fundación Tekniker (TEKNIKER) 5624500
Altroconsumo (AC) 5125000
Interel European Affairs 5125000
Microsoft Corporation 5125000
Bruegel 4939108
Teneo Brussels 4375000
ExxonMobil Petroleum & Chemical (EMPC) 3875000
Kreab 3624500
Friends of Europe (FoE) 3624500
IBON International Foundation, Inc. 3624500
Stiftung Mercator 3125000
European Fund and Asset Management Association (EFAMA) 3125000
Equinor ASA (EQNR) 3125000
BP p.l.c. (BP) 2875000
GEIE des Utilisateurs d'ERTMS (EUG) 2875000
BDEW Bundesverband der Energie- und Wasserwirtschaft e. V. (BDEW) 2875000
DAB Italia s.c.p.a. (DAB Italia) 2875000
Dipartimento di Epidemiologia (DEASL) 2800000
APCO Worldwide 2624500
Grayling 2624500
G Plus Ltd (GPLUS) 2624500
EUTOP Europe GmbH (EUTOP) 2624500
Viapass 2375641
British American Tobacco (BAT) 2375000
Hill & Knowlton International Belgium (H+K) 2375000
BVI Bundesverband Investment und Asset Management e.V. (BVI) 2375000
Brunswick Group LLP 2375000
Facebook Ireland Limited (FB-I) 2375000
Novartis International AG 2375000
European Policy Centre (EPC) 2375000
Huawei Technologies (Huawei) 2190000
International Swaps and Derivatives Association (ISDA) 2125000
ELECTRICITE DE FRANCE (EDF) 2125000
Weber Shandwick, Creation, brand names of CMGRP Belgium SCRL 2125000
RPP Group (RPP Group) 2125000
WindEurope 2125000
ENGIE (ENGIE) 2125000
Reform Society i Stockholm AB (Reform Society) 2125000
The Joint Institute for Innovation Policy (JIIP) 2125000
Association pour les Transferts de Technologies du Mans (CTTM) 2125000
EUROPEAN MAR II, LDA. & COMANDITA (ZONA FRANCA DA MADEIRA) (Euromar) 2000000
Malaysian Employers Federation (MEF) 1981062
TOTAL S.A. 1875000
EVONIK INDUSTRIES AG 1875000
Instituut voor Bestuurders / L'Institut des Administrateurs (GUBERNA) 1875000
FIPRA International Limited (FIPRA) 1875000
Rosa Luxemburg Stiftung Brussels Office 1875000
Finance Denmark (FiDa) 1875000
City of London Corporation (CoLC) 1875000
UK Finance Limited (UK Finance) 1875000
Vodafone Belgium SA (VBSA) 1875000
Scotland Europa 1875000
Merck 1750699
Deutsche Telekom (DT) 1680000
Museumvereniging 1672418
Syngenta International AG 1624500
Japan Bank for International Cooperation 1624500
GlaxoSmithKline (GSK) 1624500
Bundesverband der Deutschen Volksbanken und Raiffeisenbanken (BVR) 1624500
Associazione Bancaria Italiana (ABI) 1624500
ACTION EUROPE 1624500
Rolls-Royce plc 1624500
Credit Suisse Group AG (CSAG) 1624500
Barncancerfonden 1624500
Konrad-Adenauer-Stiftung (KAS) 1624500
South Denmark European office (SDEO) 1609591
Syndicat national des entreprises artistiques et culturelles (SYNDEAC) 1500000
Amgen Inc 1375000
Association of British Insurers (ABI) 1375000
Bank of America Merrill Lynch (BofAML) 1375000
JT International (JTI) 1375000
Secretariat of COMECE (Commission of the Episcopates of the European Union) (COMECE Secretariat) 1375000
Hume Brophy (HB) 1375000
VinylPlus 1375000
Monsanto (MON) 1375000
Federation of European Securities Exchanges (FESE) 1375000
University of Warwick 1375000
Philip Morris International Inc. (PMI) 1375000
UBS Group AG (UBS) 1375000
Centre for European Reform (CER) 1375000
European Social Network (ESN) 1375000
King Baudouin Foundation (KBF) 1375000
Centre for Fine Arts (BOZAR) 1375000
NRD CS (NRD Cyber Security) 1375000
Industrieanlagen-Betriebsgesellschaft mbH (IABG mbH) 1375000
The Applied Research Institute - Jerusalem (ARIJ) 1375000
Institut français de recherche pour l’exploitation de la mer (IFREMER) 1375000
Huntsman 1375000
Intel Corporation 1375000
Institut Jacques Delors / Jacques Delors Institute (IJD / JDI) 1375000
Trinomics B.V. 1375000
Związek Gmin i Powiatów Subregionu Centralnego Województwa Śląskiego (ZGiPSCWSL) 1375000
Rante (RNTE) 1375000
Rupprecht Consult - Forschung & Beratung GmbH (Rupprecht) 1319058
Invest Europe (Invest Europe) 1125000
Cisco Systems Inc. (Cisco) 1125000
Caritas Europa (Caritas Europa) 1125000
Avisa Partners 1125000
Finnish Energy - Energiateollisuus ry (ET) 1125000
IFPI Representing recording industry worldwide (I.F.P.I.) 1125000
Hitachi Corporate Office, Europe (Hitachi) 1125000
LVMH Publica (LVMH Publica) 1125000
Chevron Belgium BVBA (Chevron) 1125000
Eni S.p.A. 1125000
EURALIA 1125000
Platform for International Cooperation on Undocumented Migrants (PICUM) 1125000
Istituto Sindacale per la Cooperazione allo Sviluppo (ISCOS) 1125000
The Pew Charitable Trusts (Pew) 1125000
Liberty Global BV (Liberty Global) 1125000
Save the Children International 1125000
UK Research Office (UKRO) 1125000
Stiftung Ordnungspolitik - Centrum für Europäische Politik (CEP) 1125000
Apple Inc. 1125000
SANOFI 1125000
BioForum Vlaanderen (BioForum) 1125000
Nove (Nove) 1125000
Frequentis AG 1125000
University College London (UCL) 1125000
Cooperatie Kottervisserij Nederland (VisNed) (VisNed) 1125000
European Partnership for Democracy (EPD) 1125000
CERIC-ERIC (CERIC-ERIC) 1125000
The Goldman Sachs Group, Inc. (GS) 1125000
European Council on Refugees and Exiles (ECRE) 1125000
COBRA INSTALACIONES Y SERVICIOS,S.A. (Cobra) 1125000
Suade Labs Limited (SUADE) 1125000
Wemos Foundation (Wemos) 1125000
European Festivals Association (EFA) 1125000
Sociedade Portuguesa para o Estudo das Aves (SPEA) 1125000
Non Profit Enterprise and Self-sustainability Team (NESsT) 1125000
Fair Trials (FT) 1125000
The Investment Association (IA) 1125000
European Mortgage Federation - European Covered Bond Council (EMF-ECBC) 1125000
Terre des Hommes International Federation (TDHIF) 1125000
F. Hoffmann-La Roche Ltd (Roche) 1125000
Managed Funds Association (MFA) 1125000
Johnson & Johnson (J&J) 1125000
Covington & Burling LLP (Covington) 1125000
INOVYN ChlorVinyls 1125000
Carnegie Europe 1125000
The German Marshall Fund of the United States - The Transatlantic Foundation (GMF - TF) 1125000
ANIMA Investment Network (ANIMA) 1125000
Hanover Communications International 1125000
Inserm Transfert (IT) 1125000
Plataforma per la Llengua 1125000
Unión Nacional de Instituciones para el Trabajo de Acción Social (UNITAS) 1125000
Fédération Nationale de l'Artisanat Automobile (FNA) 1125000
Mémorial de la Shoah 1125000
Universidade do Porto (U.Porto) 1125000
Institut für Weltwirtschaft (IfW) 1125000
Wayna Aero (Waynabox) 1125000
Links Management and Technology S.p.A. (Links) 1125000
DIRECCIÓN DE ENERGÍA (COMISIÓN NACIONAL DE LOS MERCADOS Y LA COMPETENCIA) (CNMC) 1125000
Vlaamse Instelling voor Technologisch Onderzoek (VITO) 1125000
Royal Automobile Club Spa (RAC Spa) 1125000
Skane Lans Landsting (Region Skåne) 1125000
Navigant Netherlands B.V. (Navigant) 1125000
Ajuntament de Barcelona (Barcelona) 1125000
European Health Forum Gastein (EHFG) 1125000
FUNDACION TOMILLO 1125000
Център за изследване на демокрацията / Center for the Study of Democracy (CSD) 1125000
People for the Ethical Treatment of Animals Foundation (PETA UK) 1125000
GroentenFruit Huis 1125000
International Step by Step Association (ISSA) 1125000
UNIVERSITAS 21 (U21) 1125000
Jesuit Refugee Service - Europe (JRS-E) 1122366
Organización Mundial de Ciudades y Gobiernos Locales Unidos - United Cities and Local Governments (UCLG) 1075000
Warning: Removed 1239 rows containing non-finite outside the scale range (`stat_bin()`).
Removed 1239 rows containing non-finite outside the scale range (`stat_bin()`).

Bourse de l’UE

Characteristic N = 11,8301
Has_EU_grants
    0 9,429 (80%)
    1 2,401 (20%)
1 n (%)

Bourses en fonction des groupes d’experts

Characteristic 0
N = 9,7851
1
N = 2,0451
p-value2
Has_EU_grants

<0.001
    0 8,051 (82%) 1,378 (67%)
    1 1,734 (18%) 667 (33%)
1 n (%)
2 Pearson’s Chi-squared test
                  OR  2.5 % 97.5 %         p    
Fisher's test 2.2472 2.0177 2.5015 < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Le chargement a nécessité le package : carData
lattice theme set by effectsTheme()
See ?effectsTheme for details.
Resized limits to included dashed line in forest panel
Warning in recalculate_width_panels(panel_positions, mapped_text = mapped_text,
: Unable to resize forest panel to be smaller than its heading; consider a
smaller text size
`height` was translated to `width`.

Meetings

Nombre de rendez-vous avec la Commission
Characteristic N = 11,8301
RECO_Meetings
    0 8,363 (71%)
    1 1,336 (11%)
    2 520 (4.4%)
    3 319 (2.7%)
    4-5 345 (2.9%)
    6-10 409 (3.5%)
    11-20 305 (2.6%)
    20 et + 233 (2.0%)
1 n (%)

Meetings en fonction des groupes d’experts

Proportion d'organisation ayant eu un meeting par rapport à la participation à un groupe d'expert
Characteristic In_EG
N = 2,0451
Out_EG
N = 9,7851
Has_Meetings

    Meeting 889 (43%) 2,578 (26%)
    No_meeting 1,156 (57%) 7,207 (74%)
1 n (%)
Warning in recalculate_width_panels(panel_positions, mapped_text = mapped_text,
: Unable to resize forest panel to be smaller than its heading; consider a
smaller text size
`height` was translated to `width`.

EP.passes

In InterGroup

Characteristic N = 11,8301
In_intergroup
    0 11,026 (93%)
    1 804 (6.8%)
1 n (%)

Intergroupe en fonction des groupes experts

Characteristic 0
N = 9,7851
1
N = 2,0451
In_intergroup

    0 9,200 (94%) 1,826 (89%)
    1 585 (6.0%) 219 (11%)
1 n (%)

[1] 1.567627e-14
              TR19Full$In_intergroup
TR19Full$In_EG        0        1
             0  7.73019 -7.73019
             1 -7.73019  7.73019
                  OR  2.5 % 97.5 %         p    
Fisher's test 1.8861 1.5944 2.2251 2.782e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Resized limits to included dashed line in forest panel
`height` was translated to `width`.

2. Détails en fonction du type d’organisations

Type d'organisation
Dans le registre de transparence de 2019
Characteristic 0
N = 9,7851
1
N = 2,0451
Subsection

    Academic institutions 268 (2.7%) 66 (3.2%)
    Companies & groups 2,008 (21%) 332 (16%)
    Law firms 103 (1.1%) 11 (0.5%)
    Non-governmental organisations, platforms and networks and similar 2,596 (27%) 575 (28%)
    Organisations representing churches and religious communities 53 (0.5%) 0 (0%)
    Other organisations 276 (2.8%) 38 (1.9%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 228 (2.3%) 51 (2.5%)
    Other sub-national public authorities 92 (0.9%) 9 (0.4%)
    Professional consultancies 632 (6.5%) 31 (1.5%)
    Regional structures 100 (1.0%) 11 (0.5%)
    Self-employed consultants 303 (3.1%) 15 (0.7%)
    Think tanks and research institutions 505 (5.2%) 82 (4.0%)
    Trade and business associations 1,818 (19%) 632 (31%)
    Trade unions and professional associations 740 (7.6%) 169 (8.3%)
    Transnational associations and networks of public regional or other sub-national authorities 63 (0.6%) 23 (1.1%)
1 n (%)

On ne garde pas des analyses suivantes les organisations suivantes :

  • “Entities, offices or networks established by third countries”

  • “Self-employed individuals”

  • “Organisations representing churches and religious communities”

  • “Law firms”

Parce qu’elles représentent trop peu d’individus, en particulier dans les groupes experts.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

ETP

ETP en fonction de l'organisation
Subsection n_ETP Percent mean_orga nb_orga
Non-governmental organisations, platforms and networks and similar 7442.50 30.19 2.3470514 3171
Trade and business associations 4548.50 18.45 1.8565306 2450
Companies & groups 3694.50 14.99 1.5788462 2340
Think tanks and research institutions 2121.25 8.61 3.6137138 587
Professional consultancies 1881.00 7.63 2.8371041 663
Trade unions and professional associations 1473.75 5.98 1.6212871 909
Academic institutions 899.75 3.65 2.6938623 334
Other public or mixed entities, created by law whose purpose is to act in the public interest 785.25 3.19 2.8145161 279
Other organisations 514.75 2.09 1.6393312 314
Regional structures 454.25 1.84 4.0923423 111
Other sub-national public authorities 364.50 1.48 3.6089109 101
Self-employed consultants 254.25 1.03 0.7995283 318
Transnational associations and networks of public regional or other sub-national authorities 214.75 0.87 2.4970930 86

En fonction de l’appartenance à un groupe expert

`summarise()` has grouped output by 'In_EG'. You can override using the
`.groups` argument.
Nombre d'ETP dans les organisations
En fonction du type d'organisations
In_EG n min q1 med q3 max Mean.FTE sd.FTE
Academic institutions
0 268 0.25 0.50 1.00 3.00 86.00 2.6725746 6.1334125
1 66 0.25 0.50 1.50 3.44 23.00 2.7803030 3.8750968
Companies & groups
0 2008 0.25 0.25 0.75 1.50 45.00 1.4717380 2.7209725
1 332 0.25 0.50 1.50 3.00 15.25 2.2266566 2.4057814
Non-governmental organisations, platforms and networks and similar
0 2596 0.25 0.50 1.00 2.50 54.00 2.2078197 3.4874331
1 575 0.25 0.50 1.50 3.50 29.00 2.9756522 4.1862994
Other organisations
0 276 0.25 0.50 0.75 2.00 15.25 1.5643116 2.0998233
1 38 0.25 0.50 1.12 2.62 12.50 2.1842105 2.6652698
Other public or mixed entities, created by law whose purpose is to act in the public interest
0 228 0.25 0.50 1.00 3.00 38.00 2.7894737 4.7757047
1 51 0.25 0.25 1.00 2.75 39.00 2.9264706 5.9553115
Other sub-national public authorities
0 92 0.25 0.50 1.75 4.81 43.75 3.4402174 5.5110241
1 9 0.25 1.25 6.25 9.50 11.25 5.3333333 4.6046851
Professional consultancies
0 632 0.25 0.50 1.00 2.75 41.25 2.8560127 5.0405679
1 31 0.25 0.25 0.50 2.62 20.00 2.4516129 4.3990621
Regional structures
0 100 0.25 1.00 2.62 5.00 23.00 3.9500000 4.6766668
1 11 0.25 1.00 2.00 7.25 21.25 5.3863636 6.6552269
Self-employed consultants
0 303 0.25 0.25 0.75 1.00 9.75 0.8110561 0.8790619
1 15 0.25 0.25 0.25 1.00 1.50 0.5666667 0.4169047
Think tanks and research institutions
0 505 0.25 0.50 1.50 4.00 91.50 3.5900990 6.4134617
1 82 0.25 0.50 1.50 4.88 30.00 3.7591463 5.8721519
Trade and business associations
0 1818 0.25 0.50 1.00 1.75 37.50 1.4661716 1.9892625
1 632 0.25 0.75 1.75 3.50 49.00 2.9794304 4.2585065
Trade unions and professional associations
0 740 0.25 0.25 0.75 1.50 19.75 1.3283784 1.8308749
1 169 0.25 0.75 1.75 4.00 22.25 2.9038462 3.3445496
Transnational associations and networks of public regional or other sub-national authorities
0 63 0.25 0.50 1.50 3.50 11.25 2.5595238 2.8325991
1 23 0.25 0.88 2.00 3.00 7.50 2.3260870 2.0621519

Characteristic
In_EG
No_EG
N = 2,0341 p-value2 N = 9,6291 p-value2
Subsection
<0.001
<0.001
    Academic institutions 1.50 (0.50, 3.50)
1.00 (0.50, 3.00)
    Companies & groups 1.50 (0.50, 3.00)
0.75 (0.25, 1.50)
    Non-governmental organisations, platforms and networks and similar 1.50 (0.50, 3.50)
1.00 (0.50, 2.50)
    Other organisations 1.13 (0.50, 2.75)
0.75 (0.50, 2.00)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 1.00 (0.25, 3.00)
1.00 (0.50, 3.00)
    Other sub-national public authorities 6.25 (1.25, 9.50)
1.75 (0.50, 4.88)
    Professional consultancies 0.50 (0.25, 2.75)
1.00 (0.50, 2.75)
    Regional structures 2.00 (0.75, 9.50)
2.63 (1.00, 5.00)
    Self-employed consultants 0.25 (0.25, 1.00)
0.75 (0.25, 1.00)
    Think tanks and research institutions 1.50 (0.50, 5.00)
1.50 (0.50, 4.00)
    Trade and business associations 1.75 (0.75, 3.50)
1.00 (0.50, 1.75)
    Trade unions and professional associations 1.75 (0.75, 4.00)
0.75 (0.25, 1.50)
    Transnational associations and networks of public regional or other sub-national authorities 2.00 (0.75, 3.25)
1.50 (0.50, 3.50)
1 Members.FTE: Median (Q1, Q3)
2 Kruskal-Wallis rank sum test

Bruxelles

Characteristic In_Bruxel
N = 3,3221
No_Bruxel
N = 8,3411
p-value2
Subsection

<0.001
    Academic institutions 40 (1.2%) 294 (3.5%)
    Companies & groups 506 (15%) 1,834 (22%)
    Non-governmental organisations, platforms and networks and similar 886 (27%) 2,285 (27%)
    Other organisations 86 (2.6%) 228 (2.7%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 55 (1.7%) 224 (2.7%)
    Other sub-national public authorities 38 (1.1%) 63 (0.8%)
    Professional consultancies 245 (7.4%) 418 (5.0%)
    Regional structures 50 (1.5%) 61 (0.7%)
    Self-employed consultants 85 (2.6%) 233 (2.8%)
    Think tanks and research institutions 143 (4.3%) 444 (5.3%)
    Trade and business associations 922 (28%) 1,528 (18%)
    Trade unions and professional associations 236 (7.1%) 673 (8.1%)
    Transnational associations and networks of public regional or other sub-national authorities 30 (0.9%) 56 (0.7%)
1 n (%)
2 Pearson’s Chi-squared test

En fonction des groupes experts

The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`Bruxel`) and "estimate", "p.value", "conf.low",
  and "conf.high" statistics: FEXACT erreur 7(location). LDSTP=18270 est trop
  petit pour ce problème, (pastp=11.825, ipn_0:=ipoin[itp=567]=1429,
  stp[ipn_0]=5.53339). Augmentez la taille de l’environnement de travail ou
  considérez l’utilisation de ‘simulate.p.value=TRUE’.
Characteristic
In_EG
No_EG
In_Bruxel
N = 9321
No_Bruxel
N = 1,1021
p-value In_Bruxel
N = 2,3901
No_Bruxel
N = 7,2391
p-value2
Subsection




<0.001
    Academic institutions 8 (0.9%) 58 (5.3%)
32 (1.3%) 236 (3.3%)
    Companies & groups 131 (14%) 201 (18%)
375 (16%) 1,633 (23%)
    Non-governmental organisations, platforms and networks and similar 215 (23%) 360 (33%)
671 (28%) 1,925 (27%)
    Other organisations 16 (1.7%) 22 (2.0%)
70 (2.9%) 206 (2.8%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 9 (1.0%) 42 (3.8%)
46 (1.9%) 182 (2.5%)
    Other sub-national public authorities 3 (0.3%) 6 (0.5%)
35 (1.5%) 57 (0.8%)
    Professional consultancies 6 (0.6%) 25 (2.3%)
239 (10%) 393 (5.4%)
    Regional structures 3 (0.3%) 8 (0.7%)
47 (2.0%) 53 (0.7%)
    Self-employed consultants 1 (0.1%) 14 (1.3%)
84 (3.5%) 219 (3.0%)
    Think tanks and research institutions 25 (2.7%) 57 (5.2%)
118 (4.9%) 387 (5.3%)
    Trade and business associations 427 (46%) 205 (19%)
495 (21%) 1,323 (18%)
    Trade unions and professional associations 76 (8.2%) 93 (8.4%)
160 (6.7%) 580 (8.0%)
    Transnational associations and networks of public regional or other sub-national authorities 12 (1.3%) 11 (1.0%)
18 (0.8%) 45 (0.6%)
1 n (%)
2 Pearson’s Chi-squared test

Budget

Warning: Removed 761 rows containing non-finite outside the scale range
(`stat_boxplot()`).

Characteristic
In_EG
No_EG
N = 2,0341 p-value2 N = 9,6291 p-value2
Subsection
<0.001
<0.001
    Academic institutions 37,500 (9,999, 127,777)
20,000 (9,999, 150,000)
    Companies & groups 150,000 (25,000, 450,000)
37,500 (9,999, 150,000)
    Non-governmental organisations, platforms and networks and similar 40,000 (9,999, 225,000)
17,500 (9,999, 75,000)
    Other organisations 75,000 (17,500, 150,000)
17,500 (9,999, 75,000)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 18,750 (9,999, 250,000)
37,500 (9,999, 150,000)
    Other sub-national public authorities 150,000 (9,999, 1,125,000)
37,500 (9,999, 175,000)
    Professional consultancies 37,500 (9,999, 250,000)
37,500 (9,999, 150,000)
    Regional structures 250,000 (17,500, 784,968)
75,000 (9,999, 250,000)
    Self-employed consultants 9,999 (0, 9,999)
9,999 (9,999, 30,000)
    Think tanks and research institutions 75,000 (9,999, 350,000)
37,500 (9,999, 150,000)
    Trade and business associations 150,000 (37,500, 350,000)
37,500 (9,999, 150,000)
    Trade unions and professional associations 75,000 (17,500, 250,000)
17,500 (9,999, 75,000)
    Transnational associations and networks of public regional or other sub-national authorities 75,000 (17,500, 250,000)
37,500 (9,999, 180,000)
1 Lobbying.cost: Median (Q1, Q3)
2 Kruskal-Wallis rank sum test
`summarise()` has grouped output by 'In_EG'. You can override using the
`.groups` argument.
Nombre d'ETP dans les organisations
En fonction du type d'organisations
In_EG n min q1 med q3 max Mean.FTE sd.FTE
Academic institutions
0 268 NA 9999.0 20000 150000.0 NA NA NA
1 66 NA 9999.0 37500 126388.2 NA NA NA
Companies & groups
0 2008 NA 9999.0 37500 150000.0 NA NA NA
1 332 NA 25000.0 150000 450000.0 NA NA NA
Non-governmental organisations, platforms and networks and similar
0 2596 NA 9999.0 17500 75000.0 NA NA NA
1 575 NA 9999.0 40000 223991.0 NA NA NA
Other organisations
0 276 NA 9999.0 17500 75000.0 NA NA NA
1 38 3500 17500.0 75000 150000.0 1375000 187504.5 305264.8
Other public or mixed entities, created by law whose purpose is to act in the public interest
0 228 NA 9999.0 37500 150000.0 NA NA NA
1 51 NA 9999.0 18750 225000.0 NA NA NA
Other sub-national public authorities
0 92 NA 9999.0 37500 162500.0 NA NA NA
1 9 NA 13749.5 150000 687500.0 NA NA NA
Professional consultancies
0 632 NA 9999.0 37500 150000.0 NA NA NA
1 31 NA 9999.0 37500 225000.0 NA NA NA
Regional structures
0 100 NA 9999.0 75000 250000.0 NA NA NA
1 11 0 46250.0 250000 667484.0 2125000 482951.5 655623.1
Self-employed consultants
0 303 NA 9999.0 9999 30000.0 NA NA NA
1 15 NA 0.0 9999 9999.0 NA NA NA
Think tanks and research institutions
0 505 NA 9999.0 37500 150000.0 NA NA NA
1 82 NA 9999.0 75000 350000.0 NA NA NA
Trade and business associations
0 1818 NA 9999.0 37500 150000.0 NA NA NA
1 632 NA 37500.0 150000 350000.0 NA NA NA
Trade unions and professional associations
0 740 NA 9999.0 17500 75000.0 NA NA NA
1 169 NA 17500.0 75000 250000.0 NA NA NA
Transnational associations and networks of public regional or other sub-national authorities
0 63 NA 9999.0 37500 173532.0 NA NA NA
1 23 2850 26250.0 75000 200000.0 950000 187738.3 266955.0

Bourse de l’UE

Characteristic Has_grant
N = 2,3921
No_grant
N = 9,2711
p-value2
Subsection

<0.001
    Academic institutions 223 (9.3%) 111 (1.2%)
    Companies & groups 435 (18%) 1,905 (21%)
    Non-governmental organisations, platforms and networks and similar 875 (37%) 2,296 (25%)
    Other organisations 52 (2.2%) 262 (2.8%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 96 (4.0%) 183 (2.0%)
    Other sub-national public authorities 41 (1.7%) 60 (0.6%)
    Professional consultancies 61 (2.6%) 602 (6.5%)
    Regional structures 32 (1.3%) 79 (0.9%)
    Self-employed consultants 7 (0.3%) 311 (3.4%)
    Think tanks and research institutions 237 (9.9%) 350 (3.8%)
    Trade and business associations 225 (9.4%) 2,225 (24%)
    Trade unions and professional associations 71 (3.0%) 838 (9.0%)
    Transnational associations and networks of public regional or other sub-national authorities 37 (1.5%) 49 (0.5%)
1 n (%)
2 Pearson’s Chi-squared test

En fonction des groupes experts

The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`Has_EU_grants`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=18270 est trop petit pour ce problème, (pastp=28.9269,
  ipn_0:=ipoin[itp=236]=529, stp[ipn_0]=24.366). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
Characteristic
In_EG
No_EG
Has_grant
N = 6671
No_grant
N = 1,3671
p-value Has_grant
N = 1,7251
No_grant
N = 7,9041
p-value2
Subsection




<0.001
    Academic institutions 52 (7.8%) 14 (1.0%)
171 (9.9%) 97 (1.2%)
    Companies & groups 109 (16%) 223 (16%)
326 (19%) 1,682 (21%)
    Non-governmental organisations, platforms and networks and similar 246 (37%) 329 (24%)
629 (36%) 1,967 (25%)
    Other organisations 16 (2.4%) 22 (1.6%)
36 (2.1%) 240 (3.0%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 26 (3.9%) 25 (1.8%)
70 (4.1%) 158 (2.0%)
    Other sub-national public authorities 2 (0.3%) 7 (0.5%)
39 (2.3%) 53 (0.7%)
    Professional consultancies 10 (1.5%) 21 (1.5%)
51 (3.0%) 581 (7.4%)
    Regional structures 2 (0.3%) 9 (0.7%)
30 (1.7%) 70 (0.9%)
    Self-employed consultants 2 (0.3%) 13 (1.0%)
5 (0.3%) 298 (3.8%)
    Think tanks and research institutions 49 (7.3%) 33 (2.4%)
188 (11%) 317 (4.0%)
    Trade and business associations 104 (16%) 528 (39%)
121 (7.0%) 1,697 (21%)
    Trade unions and professional associations 36 (5.4%) 133 (9.7%)
35 (2.0%) 705 (8.9%)
    Transnational associations and networks of public regional or other sub-national authorities 13 (1.9%) 10 (0.7%)
24 (1.4%) 39 (0.5%)
1 n (%)
2 Pearson’s Chi-squared test

Meetings

Characteristic N = 11,6631
Subsection
    Academic institutions 0.0 (0.0 - 0.0) | 1.0 - 12.0
    Companies & groups 0.0 (0.0 - 2.0) | 10.0 - 203.0
    Non-governmental organisations, platforms and networks and similar 0.0 (0.0 - 0.0) | 2.0 - 140.0
    Other organisations 0.0 (0.0 - 0.0) | 3.0 - 34.0
    Other public or mixed entities, created by law whose purpose is to act in the public interest 0.0 (0.0 - 0.0) | 2.0 - 52.0
    Other sub-national public authorities 0.0 (0.0 - 1.0) | 2.0 - 35.0
    Professional consultancies 0.0 (0.0 - 1.0) | 3.0 - 57.0
    Regional structures 0.0 (0.0 - 1.0) | 2.0 - 18.0
    Self-employed consultants 0.0 (0.0 - 0.0) | 1.0 - 8.0
    Think tanks and research institutions 0.0 (0.0 - 1.0) | 3.0 - 53.0
    Trade and business associations 0.0 (0.0 - 1.0) | 7.0 - 194.0
    Trade unions and professional associations 0.0 (0.0 - 0.0) | 2.0 - 88.0
    Transnational associations and networks of public regional or other sub-national authorities 0.0 (0.0 - 0.0) | 2.0 - 10.0
1 Meetings: Median (Q1 - Q3) | 90% Centile - Max

En fonction des groupes experts

Characteristic
In_EG
No_EG
N = 2,0341 p-value2 N = 9,6291 p-value2
Subsection
<0.001
<0.001
    Academic institutions 0 (0 - 0) | 1 - 12
0.00 (0.00 - 0.00) | 2.00 - 4.00
    Companies & groups 1 (0 - 10) | 26 - 203
0.00 (0.00 - 1.00) | 6.00 - 106.00
    Non-governmental organisations, platforms and networks and similar 0 (0 - 1) | 8 - 140
0.00 (0.00 - 0.00) | 2.00 - 76.00
    Other organisations 0 (0 - 3) | 5 - 18
0.00 (0.00 - 0.00) | 2.00 - 34.00
    Other public or mixed entities, created by law whose purpose is to act in the public interest 0 (0 - 0) | 2 - 52
0.00 (0.00 - 0.00) | 2.00 - 28.00
    Other sub-national public authorities 0 (0 - 1) | 35 - 35
0.00 (0.00 - 1.00) | 2.00 - 10.00
    Professional consultancies 0 (0 - 0) | 12 - 17
0.00 (0.00 - 1.00) | 3.00 - 57.00
    Regional structures 0 (0 - 1) | 11 - 18
0.00 (0.00 - 0.50) | 2.00 - 8.00
    Self-employed consultants 0 (0 - 0) | 0 - 2
0.00 (0.00 - 0.00) | 1.00 - 8.00
    Think tanks and research institutions 0 (0 - 2) | 6 - 36
0.00 (0.00 - 1.00) | 3.00 - 53.00
    Trade and business associations 1 (0 - 7) | 21 - 194
0.00 (0.00 - 1.00) | 3.00 - 61.00
    Trade unions and professional associations 0 (0 - 3) | 8 - 88
0.00 (0.00 - 0.00) | 1.00 - 46.00
    Transnational associations and networks of public regional or other sub-national authorities 0 (0 - 1) | 5 - 10
0.00 (0.00 - 0.00) | 1.00 - 6.00
1 Meetings: Median (Q1 - Q3) | 90% Centile - Max
2 Kruskal-Wallis rank sum test

EP.Passes

Characteristic N = 11,6631
Subsection
    Academic institutions 1.00 (1.00 - 3.00) | 4.00 - 6.00 / 24
    Companies & groups 2.00 (1.00 - 3.00) | 5.00 - 21.00 / 499
    Non-governmental organisations, platforms and networks and similar 2.00 (1.00 - 4.00) | 6.00 - 26.00 / 589
    Other organisations 2.00 (1.00 - 2.00) | 4.00 - 13.00 / 45
    Other public or mixed entities, created by law whose purpose is to act in the public interest 2.00 (1.00 - 3.00) | 4.00 - 5.00 / 23
    Other sub-national public authorities 3.00 (1.00 - 4.00) | 6.00 - 6.00 / 7
    Professional consultancies 2.00 (1.00 - 6.00) | 13.00 - 58.00 / 194
    Regional structures 4.00 (1.50 - 5.00) | 12.00 - 12.00 / 8
    Self-employed consultants 1.00 (1.00 - 1.00) | 1.00 - 2.00 / 73
    Think tanks and research institutions 2.00 (1.00 - 4.00) | 6.00 - 9.00 / 89
    Trade and business associations 2.00 (1.00 - 3.00) | 6.00 - 24.00 / 549
    Trade unions and professional associations 2.00 (1.00 - 3.00) | 5.00 - 14.00 / 127
    Transnational associations and networks of public regional or other sub-national authorities 2.00 (1.00 - 2.00) | 4.00 - 4.00 / 17
1 Number.of.EP.accredited.persons: Median (Q1 - Q3) | 90% Centile - Max / N Non-missing

En fonction des groupes experts

Warning: Removed 9419 rows containing non-finite outside the scale range
(`stat_boxplot()`).

The following warnings were returned during `tbl_strata()`:
! For variable `Number.of.EP.accredited.persons` (`Subsection = "Self-employed
  consultants"`) and "max" statistic: aucun argument pour max ; -Inf est
  renvoyé
Characteristic
In_EG
No_EG
N = 2,0341 p-value2 N = 9,6291 p-value2
Subsection
0.038
<0.001
    Academic institutions 1.50 (1.00 - 4.00) | 6.00 - 6.00 / 6
1.00 (1.00 - 3.00) | 4.00 - 6.00 / 18
    Companies & groups 2.00 (1.00 - 4.00) | 6.00 - 14.00 / 131
2.00 (1.00 - 3.00) | 4.00 - 21.00 / 368
    Non-governmental organisations, platforms and networks and similar 3.00 (2.00 - 5.50) | 8.00 - 26.00 / 144
2.00 (1.00 - 3.00) | 5.00 - 16.00 / 445
    Other organisations 2.00 (1.00 - 3.00) | 11.00 - 11.00 / 9
2.00 (1.00 - 2.00) | 3.00 - 13.00 / 36
    Other public or mixed entities, created by law whose purpose is to act in the public interest 3.00 (2.00 - 3.00) | 3.00 - 3.00 / 3
1.50 (1.00 - 2.50) | 4.50 - 5.00 / 20
    Other sub-national public authorities 4.00 (2.00 - 6.00) | 6.00 - 6.00 / 2
3.00 (1.00 - 3.00) | 4.00 - 4.00 / 5
    Professional consultancies 3.00 (3.00 - 12.00) | 14.00 - 14.00 / 5
2.00 (1.00 - 6.00) | 13.00 - 58.00 / 189
    Regional structures 8.00 (4.00 - 12.00) | 12.00 - 12.00 / 2
3.00 (1.00 - 4.00) | 6.00 - 6.00 / 6
    Self-employed consultants NA (NA - NA) | NA - -Inf / 0
1.00 (1.00 - 1.00) | 1.00 - 2.00 / 73
    Think tanks and research institutions 2.00 (2.00 - 4.00) | 5.00 - 6.00 / 17
2.00 (1.00 - 4.00) | 6.00 - 9.00 / 72
    Trade and business associations 3.00 (1.00 - 4.00) | 7.00 - 24.00 / 293
2.00 (1.00 - 3.00) | 4.00 - 12.00 / 256
    Trade unions and professional associations 2.00 (2.00 - 5.00) | 7.00 - 14.00 / 50
1.00 (1.00 - 2.00) | 3.00 - 6.00 / 77
    Transnational associations and networks of public regional or other sub-national authorities 2.00 (2.00 - 3.00) | 4.00 - 4.00 / 6
1.00 (1.00 - 2.00) | 3.00 - 4.00 / 11
1 Number.of.EP.accredited.persons: Median (Q1 - Q3) | 90% Centile - Max / N Non-missing
2 Kruskal-Wallis rank sum test

Intergroupe

En fonction des groupes experts

The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`In_intergroup`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=18270 est trop petit pour ce problème, (pastp=41.7517,
  ipn_0:=ipoin[itp=206]=6946, stp[ipn_0]=42.4585). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
The following errors were returned during `tbl_strata()`:
✖ For variable `Subsection` (`In_intergroup`) and "estimate", "p.value",
  "conf.low", and "conf.high" statistics: FEXACT erreur 7(location).
  LDSTP=16830 est trop petit pour ce problème, (pastp=97.2627,
  ipn_0:=ipoin[itp=413]=64, stp[ipn_0]=69.8756). Augmentez la taille de
  l’environnement de travail ou considérez l’utilisation de
  ‘simulate.p.value=TRUE’.
Characteristic
In_EG
No_EG
Has_intergroup
N = 2191
No_intergroup
N = 1,8151
p-value Has_intergroup
N = 5731
No_intergroup
N = 9,0561
p-value
Subsection





    Academic institutions 4 (1.8%) 62 (3.4%)
6 (1.0%) 262 (2.9%)
    Companies & groups 27 (12%) 305 (17%)
62 (11%) 1,946 (21%)
    Non-governmental organisations, platforms and networks and similar 71 (32%) 504 (28%)
235 (41%) 2,361 (26%)
    Other organisations 3 (1.4%) 35 (1.9%)
11 (1.9%) 265 (2.9%)
    Other public or mixed entities, created by law whose purpose is to act in the public interest 2 (0.9%) 49 (2.7%)
9 (1.6%) 219 (2.4%)
    Other sub-national public authorities 0 (0%) 9 (0.5%)
8 (1.4%) 84 (0.9%)
    Professional consultancies 1 (0.5%) 30 (1.7%)
31 (5.4%) 601 (6.6%)
    Regional structures 2 (0.9%) 9 (0.5%)
8 (1.4%) 92 (1.0%)
    Self-employed consultants 0 (0%) 15 (0.8%)
20 (3.5%) 283 (3.1%)
    Think tanks and research institutions 6 (2.7%) 76 (4.2%)
23 (4.0%) 482 (5.3%)
    Trade and business associations 80 (37%) 552 (30%)
102 (18%) 1,716 (19%)
    Trade unions and professional associations 18 (8.2%) 151 (8.3%)
47 (8.2%) 693 (7.7%)
    Transnational associations and networks of public regional or other sub-national authorities 5 (2.3%) 18 (1.0%)
11 (1.9%) 52 (0.6%)
1 n (%)

Resized limits to included dashed line in forest panel
`height` was translated to `width`.